Page Header

Cavalcade Legume (Centrosema pascuorum) Used as Soil Amendment in RD41 Rice Fields: Short-term Effects on the Soil Nematode Community, Soil Properties, and Yield Components

Natthidech Beesa, Pipat Macharoen, Nattakorn Kuncharoen, Tida Dethoup Tida Dethoup, Anongnuch Sasnarukkit, Buncha Chinnasri, Kansiree Jindapunnapat

Abstract


Numerous phytoparasitic nematodes have been identified in Thailand’s paddy fields, which routinely cause substantial reductions in rice crop yields. However, effective strategies for their management have yet to be documented. In this study, cavalcade legume was used as a soil amendment in RD41 rice fields to examine its effects on the soil nematode community, soil properties, and yield components compared to untreated control plots. The results demonstrated that the population densities of plant-parasitic nematodes (PPNs) in the order Tylenchida, primarily Hirschmanniella sp., significantly decreased in cavalcade-treated plots across all soil sampling periods. Moreover, there was an increase in the populations of beneficial nematodes within the orders Dorylaimida and Araeolaimida. In contrast, greater PPN populations were observed in the control plots compared to the initial nematode population. In addition to reducing PPN populations, this legume showed other benefits, specifically increased soil properties (available P) and rice plant growth (plant height and number of tillers). While there was no statistically significant difference in soil organic matter (SOM) content, the application of this legume tended to increase SOM content, in contrast to a decrease in SOM content observed in the control plots. Overall, this study provides valuable insights into the substantial advantages of using cavalcade legumes in RD41 rice fields.

Keywords



[1]    M. M. A. Youssef and M. F. M. Eissa, “The rice root nematode, Hirschmanniella oryzae, its identification, economic importance and control measures in Egypt: A review,” Archives of Phytopathology and Plant Protection, vol. 11, pp. 2340–2351, 2014.

[2]    L. Rusinque, C. Maleita, I. Abrantes, J. E. Palomares-Rius, and M. L. Inácio, “Meloidogyne graminicola - a threat to rice production: Review update on distribution, biology, identification, and management,” Biology (Basel), vol. 10, p. 1163, 2021.

[3]    J. Bridge, R. A. Plowright, and D. Peng, “Nematode parasites of rice,” in Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 2nd ed., M. Luc, R. A. Sikora, and J. Bridge, Eds., UK: CAB International, pp. 87–130, 2005.

[4]    J. N. Sasser and D. W. Freckman, “A world prospective on nematology: The role of the society,” in Vistas on Nematology, Society of Nematologists, J. A. Veech and D. W. Dickson, Eds., Maryland: Hyattsville, pp. 7–14, 1978.

[5]    A. Khun-in, “Population of rice disease caused by rice nematodes in Phra Nakhon Si Ayutthaya, Thailand,” Khon Kaen Agriculture Journal, vol. 48, pp. 1374–1383, 2020.

[6]    P. Nimnoi, P. Pirankham, K. Srimuang, and P. Ruanpanun, “Insights into soil nematode diversity and bacterial community of Thai jasmine rice rhizosphere from different paddy fields in Thailand,” PeerJ, vol. 12, 2023, Art. no. e17289.

[7]    T. Kyndt, D. Fernandez, and G. Gheysen, “Plant-parasitic nematode infections in rice: Molecular and cellular insights,” Annual Review of Phytopathology, vol. 52, pp. 135–153, 2014.

[8]    Z. T. Z. Maung, P. P. Kyi, Y. Y. Myint, T. Lwin, and D. Waele, “Occurrence of the rice root nematode Hirschmanniella oryzae on monsoon rice in Myanmar,” Tropical Plant Pathology, vol. 35, pp. 3–10, 2010.

[9]    European and Mediterranean Plant Protection Organization, “PM 7/94 (2) Hirschmanniella spp., ” Bulletin OEPP / EPPO Bulletin, vol. 52, pp. 314–325, 2022.

[10] S. Yamsonrat, “Studies on rice root nematodes (Hirschmanniella spp.) in Thailand,” Plant Disease Reporter, vol.  51, pp. 960–963, 1967.

[11] J. C. Prot and M. L. Rahman, “Nematode ecology, economic importance, and management in rice ecosystems in South and Southeast Asia,” in Rice Pest Science and Management, P. S. Teng, K. L. Heong, and K. Moody, Eds., Laguna, Philippines: IRRI, pp. 129–144, 1994.

[12] M. Renco, “Organic amendments of soil as useful tools of plant parasitic nematodes control,” Helminthologia, vol. 50, pp.  3–14, 2013.

[13] D. L. Coyne, H. H. Fourie, and M. Moens, “Current and future management strategies in resource-poor regions,” in Root-knot Nematodes, R. N. Perry, M. Moens, and J. Starr, Eds., UK: Wallingford, pp. 444–475, 2009.

[14] C. N. Viaene, D. L. Coyne, and B. R. Kerry, “Biological and cultural management,” in Plant Nematology, R. N. Perry and M. Moens, Eds., UK: Wallingford, pp. 346–369, 2006.

[15] J. B. Morris and J. T. Walker, “Non-traditional legumes as potential soil amendments for nematode control,” Journal of Nematology, vol. 34, pp. 358–361, 2002.

[16] K. Osei, S. R. Gowen, B. Pembroke, R. L. Brandenburg, and D. Jordan, “Potential of leguminous cover crops in management of a mixed population of root-knot nematodes (Meloidogyne spp.),” Journal of Nematology, vol. 42, pp. 173–178, 2010.

[17] Z. J. Grabau, Z. T. Zar Maung, D. C. Noyes, D. G. Baas, B. P. Werling, D. C. Brainard, and H. Melakeberhan, “Effects of cover crops on Pratylenchus penetrans and the nematode community in carrot production,” Journal of Nematology, vol. 49, pp.  114–123, 2017.

[18] N. Beesa, A. Sasnarukkit, K. Jindapunnapat, F. Tivet, S. Bellafiore and B. Chinnasri, “Species characterization and population dynamics of Hirschmanniella mucronata in lowland rice fields managed under conservation agriculture in Cambodia,” Journal of the Saudi Society of Agricultural Sciences, vol. 20, pp. 137–145, 2021.

[19] E. Kebede, “Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems,” Frontiers in Sustainable Food Systems, vol. 5, pp. 767998, 2021.

[20] K. H. Wang, B. S. Sipes, and D. P. Schmitt, “Crotalaria as a cover crop for nematode management: A review,” Nematropica, vol. 32, pp.  35–57, 2002.

[21] A. Masson, M. Vermeire, V. Leng, M. Simonin, F. Tivet, H. N. Thi, C. Brunel, M. Suong, F. Kuok, L. Moulin, and S. Bellafiore, “Enrichment in biodiversity and maturation of the soil food web under conservation agriculture is associated with suppression of rice-parasitic nematodes,” Agriculture, Ecosystems & Environment, vol. 331, 2022, Art. no. 107913.

[22] A. G. Cameron, “Centrosema pascuorum in Australia’s Northern Territory: A tropical forage legume success story,” Tropical Grasslands-Forrajes Tropicales, vol. 39, p. 291, 2005.

[23] M. O. Jibrin, H. M. Lawal, and P. S. Chindo, “Influence of cover crops and tillage systems on nematode populations in a maize-cover crop intercrop,” Archives of Phytopathology and Plant Protection, vol. 47, pp. 1–8, 2014.

[24] N. Beesa, N. Kuncharoen, T. Dethoup, K.  Jindapunnapat, A. Sasnarukkit and B. Chinnasri, “Identification of bioactive compounds in cavalcade leaves for nematicidal activity against Hirschmanniella mucronata and Meloidogyne graminicola using LC-QTOF-MS,” Crop Protection, vol. 185, 2024, Art. no. 106875.

[25] J. R. Christie and V.G. Perry, “Removing nematodes from soil,” Proceedings of the Helminthological Society of Washington, vol. 18, pp. 106–108, 1951.

[26] D. L. Coyne, J. M. Nicol, and B. Claudius-Cole, “Practical plant nematology: A field and laboratory guide SP-IPM secretariat,” International Institute of Tropical Agriculture (IITA), Cotonou, Benin, 2007.

[27] M. Holterman, A. Wurff, S. Elsen, H. Megen, T. Bongers, O. Holovachov, J. Bakker, and J. Helder, “Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades,” Molecular Biology and Evolution, vol. 23, pp. 1792–1880, 2006.

[28] S. Andrews, “FastQC: A quality control tool for high throughput sequence data,” Babraham Bioinformatics, Babraham Institute, Cambridge, UK, 2010.

[29] P. Ewels, M. Magnusson, S. Lundin, and M. Kaller, “MultiQC: Summarize analysis results for multiple tools and samples in a single report,” Bioinformatics, vol. 32, pp.  3047–3048, 2016.

[30] S. Chen, “Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication using fastp,” iMeta, vol. 2, p. e107, 2023.

[31] K. Gattoni, E. M. S. Gendron, R. Sandoval-Ruiz, A. Borgemeier, J. P. McQueen, M. R. Shepherd, D. Slos, T. O. Powers, and D. L. Porazinska, “18S-NemaBase: Curated 18S rRNA database of nematode sequences,” Journal of Nematology, vol. 55, 2023, Art. no. 20230006.

[32] T. Wen, G. Niu, T. Chen, Q. Shen, J. Yuan, and Y. -X. Liu, “The best practice for microbiome analysis using R,” Protein & Cell, vol. 14, pp. 713–725, 2023.

[33] P. J. McMurdie and S. Holmes, “Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data,” PLoS ONE, vol. 8, 2013, Art. no. e61217.

[34] T. Wongsurawat, S. Sutheeworapong, P. Jenjaroenpun, S. Charoensiddhi, A. N. Khoiri, S. Topanurak, C. Sutthikornchai and P. Jintaridth, “Microbiome analysis of Thai traditional fermented soybeans reveals short‑chain fatty acid‑associated bacterial taxa,” Scientific Reports, vol. 13, p. 7573, 2023.

[35]  H. Xiao, J. Liu, and F. Li, “Both alpha and beta diversity of nematode declines in response to moso bamboo expansion in south China,” Applied Soil Ecology, vol. 183, 2023, Art. no. 104761.

[36]  M. Ahmed, D. Slos, and O. Holovachov, “Assessing the diversity of nematodes in the Store Mosse National Park (Sweden) using metabarcoding,” Metabarcoding and Metagenomics, vol. 8, pp. 1–24, 2024.

[37] N. Beesa, A. Sasnarukkit, K. Jindapunnapat, B. Chinnasri, and T. Chairin, “Incidence and characterization of rice root nematodes, Hirschmanniella mucronata, from rice fields in Pathum Thani province, Thailand,” Trends in Sciences, vol. 18, p. 486, 2021.

[38] N. Beesa, B. Chinnasri, A. Sasnarukkit, T. Dethoup, K. Jindapunnapat, A. W. Kiriga, K. Saikai, S. Haukeland, and D. Coyne, “Potential of cavalcade, Centrosema pascuorum, leaves for controlling Meloidogyne javanica and quantification of active phytochemicals,” Nematology, vol. 25, pp. 1019–1032, 2023.

[39] E. N. Mary, I. E. N. Oyema, A. S. Yo'ila, and B. M. Victoria, “Effect of long-term soil management practices on nematode population in an Alfisol under continuous maize in Northern Guinea Savanna of Nigeria,” International Journal of Agricultural Policy and Research, vol. 1, pp. 80–86, 2013.

[40] E. Vukicevich, T. Lowery, P. Bowen, J. R. Úrbez-Torres, and M. Hart, “Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review,” Agronomy for Sustainable Development, vol. 36, p. 48, 2016.

[41] K. Dang, X. Gong, G. Zhao, H. Wang, A. Ivanistau and B. Feng, “Intercropping alters the soil microbial diversity and community to facilitate nitrogen assimilation: A potential mechanism for increasing proso millet grain yield,” Frontiers in Microbiology, vol. 24,  Art. no. 601054, 2020.

[42] A. S. Erhunmwunse, V. A. Guerra, J. C. Liu, C. L. Mackowiak, A. R. S. Blount, J. C. B. Dubeux, and H. L. Liao, “Soil bacterial diversity responds to long-term establishment of perennial legumes in warm-season grassland at two soil depths,” Microorganisms, vol. 11, p. 3002, 2023.

[43] H. Fan, M. Yao, H. Wang, D. Zhao, X. Zhu, Y. Wang, X. Liu, Y. Duan, and L. Chen, “Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita,” BMC Microbiology, vol. 20, p. 299, 2020.

[44] R. Saharan, J. A. Patil, S. Yadav, A. Kumar, and V. Goyal, “The nematicidal potential of novel fungus, Trichoderma asperellum FbMi6 against Meloidogyne incognita,” Scientific Reports, vol. 13, p. 6603, 2023.

[45] K. Puttawong, N. Beesa, S. Kasem, K. Jindapunnapat, B. Chinnasri, and A. Sasnarukkit, “Potential of Bacillus spp. against root-knot nematode, Meloidogyne enterolobii parasitizing chili (Capsicum annuum L.),” Crop Protection, vol. 184, pp.  106780, 2024.

[46] J. Na, L. X. Liang, W. Yang, L. Qian, and J. Heng, “Effect of Streptomyces rubrogriseus HDZ-9-47 on the growth and defense enzymes of tomato,” Acta Phytopathologica Sinica, vol. 46, pp. 833–840, 2016.

[47] J. Poveda, P. Abril-Urias, and C. Escobar, “Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic Fungi,” Frontiers in Microbiology, vol. 11, p. 992, 2020.

[48] Z. Xing, X. Wu, J. Zhao, X. Zhao, X. Zhu, Y. Wang, H. Fan, L. Chen, X. Liu, and Y. Duan, “Isolation and identification of induced systemic resistance determinants from Bacillus simplex Sneb545 against Heterodera glycines,” Scientific Reports, vol. 10, 2020, Art. no. 11586.

[49] M. Prusty, A. K. Dash, N. Panda, M. R. Satpathy, S. G. Sahu, and P. K. Samant, “Phosphorus management and suitability of rice cultivar on system yield augmentation under rice-fallow area of Mid-Central Table Land Zone of Odisha,” Oryza, vol. 60, pp. 560–566, 2023.

[50] M. Irfan, T. Aziz, M. A. Maqsood, H. M. Bilal, K. H. M. Siddique, and M. Xu, “Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation patterns,” Scientific Reports, vol. 10, p. 4278, 2020.

[51] B. H. Andrianary, Y. Tsujimoto, H. Rakotonindrina, A. Z. Oo, M. Rabenarivo, N. Ramifehiarivo, and H. Razakamanarivo, “Phosphorus application affects lowland rice yields by changing phenological development and cold stress degrees in the central highlands of Madagascar,” Field Crops Research, vol. 271, 2021, Art. no. 108256.

[52] S. Yoseftabar, “Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L),” International Journal of Agronomy and Plant Production, vol. 3, pp. 579–584, 2012.

[53] N. Arunrat, N. Pumijumnong, and R. Hatano, “Practices sustaining soil organic matter and rice yield in a Tropical Monsoon Region,” Journal of Soil Science and Plant Nutrition, vol. 63, pp. 274–287, 2017.

[54]  H. Tang, K. Cheng, L. Shi, C. Li, L. Wen, W. Li, M. Sun, G. Sun, and Z. Long, “Effects of long-term organic matter application on soil carbon accumulation and nitrogen use efficiency in a double-cropping rice field,” Environmental Research, vol. 213, 2022, Art. no. 113700.

Full Text: PDF

DOI: 10.14416/j.asep.2024.10.007

Refbacks

  • There are currently no refbacks.