Page Header

Two-Step Reaction for Biodiesel Synthesized from a High-Free Fatty Acid Crude Palm Kernel Oil

Eka Kurniasih, Rahmi Rahmi, Muhammad Dani Supardan, Darusman Darusman

Abstract


Biodiesel was synthesized through a two-step reaction using crude palm kernel oil with high-free fatty acids (FFAs) and methanol. The two-step reaction involves esterification and transesterification. Esterification was carried out with a variation of H2SO4 (10%, 15%, and 20% w/v) at 65 °C for 120 min. Esterification produced fatty acid methyl ester (FAME) with an ester content of 67.56%. FAME was used as feedstock for transesterification. Transesterification was carried out with variations in reaction time (120, 180, and 240 min) at 65 °C in addition to NaOH 0.5% (w/w). Transesterification produced biodiesel, glycerol, and soap (side product). Biodiesel was separated using decantation and washing with warm distilled water at 40 °C. The optimum biodiesel was obtained at 180 min with 96.59% ester content. The characteristics of the optimum biodiesel were an FFAs of 0.2 mg KOH/g, iodine value of 20.12 g I2/100 g, density of 0.86 g/mL, kinematic viscosity of 2.51 mm2/s water content of 0.031%, ash content of 0.02%, cetane number of 60.8, flash point of 120 °C. Biodiesel has strong band spectra for C-H on 2,922.70 cm–1, C=O on 1,739.38 cm–1, C-H2 on 1,460.25 cm–1, C-O on 1,197.29 cm–1, and O-H on 3,425.10 cm–1. In conclusion, a two-step reaction is an effective method to synthesize biodiesel using CPKO with high FFAs as feedstock.

Keywords



[1]     S. Shamohammadi, N. Aghabozorgi, H. R. Motaghian, and A. Semnani, “Introducing the law of ‘irreversibility’ in the dynamic equilibrium of mass,” Case Studies in Chemical and Environmental Engineering, vol. 10, Dec. 2024, Art. no. 100746, doi: 10.1016/j.cscee.2024. 100746.

[2]     M. C. Macawile and J. Auresenia, “Utilization of supercritical carbon dioxide and Co-solvent n-hexane to optimize oil extraction from Gliricidia sepium seeds for biodiesel production,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art.no 5404, doi: 10.14416/j.asep.2021.09.003.

[3]     E. K. Sitepu, K. Heimann, C. L. Raston, and W. Zhang, “Critical evaluation of process parameters for direct biodiesel production from diverse feedstock,” Renewable and Sustainable Energy Reviews, vol. 123, 2020, Art.no 109762, doi: 10.1016/j.rser.2020.109762.

[4]     P. Harisha, B. N. Anil Kumar, S. R. Tilak, and C. Ganesh, “Production and optimization of biodiesel from composite Pongamia oil, animal fat oil and waste cooking oil using RSM,” Material  Today Proceeding, vol. 47, pp. 4901–4905, 2021, doi: 10.1016/j.matpr.2021.06.322.

[5]     S. O. Otieno, C. O. Kowenje, A. Okoyo, D. M. Onyango, K. O. Amisi, and K. M. Nzioka, “Optimizing production of biodiesel catalysed by chemically tuned natural zeolites,” Material Today Proceeding, vol. 5, no. 4, pp. 10561–10569, 2018, doi: 10.1016/j.matpr.2017.12.388.

[6]     J. Shpirer, L. Livshits, H. Kamer, T. Alon, Y. Portnik, and U. Moallem, “Effects of the palmitic to oleic ratio in the form of calcium salts of fatty acids on the production and digestibility in high-yielding dairy cows,” Journal of Dairy Science, vol. 10, no. 10, 2024, doi: 10.3168/jds.2023-24382.

[7]     B. Paramasivam, R. Kasimani, and S. Rajamohan, “Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends,” Environmental Science and Pollution Research, vol. 25, no. 33, pp. 33806–33819, 2018, doi: 10.1007/s11356-018-3319-x.

[8]     P. Baranitharan, K. Ramesh, and R. Sakthivel, “Multi-attribute decision-making approach for Aegle marmelos pyrolysis process using TOPSIS and Grey Relational Analysis: Assessment of engine emissions through novel Infrared thermography,” Journal Cleaner Production, vol. 234, pp. 315–328, 2019, doi: 10.1016/j.jclepro.2019.06.188.

[9]     P. Baranitharan, K. Ramesh, and R. Sakthivel, “Analytical characterization of the Aegle marmelos pyrolysis products and investigation on the suitability of bio‐oil as a third generation bio‐fuel for C.I engine,” Environmental Progress and Sustainable Energy, vol. 38, no. 4, 2018, doi: 10.1002/ep.13116.

[10]  A. A. Ayoola, F. K. Hymore, C. A. Omonhinmin, P. O. Babalola, O. S. I. Fayomi, O. C. Olawole, A. V. Olawepo, and A. Babalola, “Response surface methodology and artificial neural network analysis of crude palm kernel oil biodiesel production,” Chemical Data Collections, vol. 28, 2020, doi: 10.1016/j.cdc. 2020.100478.

[11]  E. Kurniasih, P. Pardi, and Adriana, “Transesterification condition of crude palm oil to biodiesel using solid catalyst Zeolite/NaOH,” IOP Conference Series Material Science Engineering, vol. 854, no. 1, 2020, doi: 10.1088/1757-899X/854/1/012003.

[12]  A. T. F, H. A. Akens, and E. B. Ekeinde, “Synthesis of biodiesel from blend of seeds oil-animal fat employing agricultural wastes as base catalyst,” Case Studies in Chemical and Environmental Engineering, vol. 5, Apr.  2022, Art. no. 100202, doi: 10.1016/j.cscee.2022.100202.

[13]  M. R. Abukhadra, S. M. Ibrahim, S. M. Yakout, M. E. El-Zaidy, and A. A. Abdeltawab, “Synthesis of Na+ trapped bentonite/zeolite-P composite as a novel catalyst for effective production of biodiesel from palm oil; Effect of ultrasonic irradiation and mechanism,” Energy Conversion Management, vol. 196, pp. 739–750, 2019, doi: 10.1016/j.enconman.2019.06.027.

[14]  S. Otieno, F. Kengara, C. Kowenje, and R. Mokaya, “Optimization of biodiesel synthesis from Jatropha curcas oil using kaolin derived zeolite Na-X as a catalyst,” RSC Advance, vol. 12, no. 35, pp. 22792–22805, 2022, doi: 10.1039/ d2ra03278c.

[15]  National Biodiesel Board, “Specification for biodiesel (B100) – ASTM D6751-07b property ASTM method limits units bold = BQ-9000 critical specification testing once production process under control,” 2007. [Online]. Available:  https://www.glycerintraders.com/ASTM%206751%20spec.pdf.

[16]  A. Gaurav, C. T. Q. Mai, and F. T. T. Ng, “ScienceDirect A kinetic model for a single step biodiesel production from a high free fatty acid (FFA) biodiesel feedstock over a solid heteropolyacid catalyst,” Green Energy and Environment, vol. 4, pp. 328–341, 2019, doi: 10.1016/j.gee.2019.03.004.

[17]  G. Adolfo, A. B. Mendes, V. Macowski, and D. Silva, “Vegetable oil in carbon dioxide equivalent emissions,” Latin American Transport Studies, vol. 2, Jun. 2024, Art. no. 100018, doi: 10.1016/j.latran.2024.100018.

[18]  M. Kass, B. Kaul, B. Armstrong, J. Szybist, and V. Lobodin, “Stability, rheological and combustion properties of biodiesel blends with a very-low sulfur fuel oil (VLSFO),” Fuel, vol. 316, 2022, doi: 10.1016/j.fuel.2022.123365.

[19]  Q. Xie, L. Cai, F. Xia, X. Liang, Z. Wu, Y. Liu, X. Li, M. Lu, Y. Nie, and J. Ji, “High vacuum distillation for low-sulfur biodiesel production: From laboratory to large scale,” Journal of Cleaner Production, vol. 223, pp. 379–385, 2019, doi: 10.1016/j.jclepro.2019.03.160.

[20]  H. Ma, M. M. Addy, E. Anderson, W. Liu, Y. Liu, Y. Nie, P. Chen, B. Cheng, H. Lei, and R. Ruan, “A novel process for low-sulfur biodiesel production from scum waste,” Bioresource Technology, vol. 214, pp. 826–835, 2016, doi: 10.1016/j.biortech.2016.05.029.

[21]  C. Yang, R. Faragher, Z. Yang, B. Hollebone, B. Fieldhouse, P. Lambert, and V. Beaulac, “Characterization of chemical fingerprints of ultralow sulfur fuel oils using gas chromatography-quadrupole time-of-flight mass spectrometry,” Fuel, vol. 343, p. 127948, 2023, doi: 10.1016/j.fuel.2023.127948.

[22]  C. Ranzan, L. Ranzan, L. F. Trierweiler, and J. O. Trierweiler, “Sulfur determination in diesel using 2D fluorescence spectroscopy and linear models,” IFAC-Papers Online, vol. 28, no. 8, pp. 415–420, 2015, doi: 10.1016/j.ifacol.2015. 09.003.

[23]  C. B. Rasrendra, E. G. Maulidanti, S. E.P. Darlismawantyani, N. Nurdini, W. Rustyawan, Subagjo, and G. T. M. Kadja, “Bifunctional NiMo/HY-γ-Al2O3 catalysts for an effective production of ultra-low sulfur diesel,” Case Studies in Chemical and Environmental Engineering, vol. 8, July, 2023, Art. no. 100427, doi: 10.1016/j.cscee.2023.100427.

[24]  A. O. Etim, P. Musonge, and A. C. Eloka-Eboka, “Process optimization of bio-alkaline catalyzed transesterification of flax seed oil methyl ester,” Scientific Africa, vol. 16, 2022, Art. no. e01275, doi: 10.1016/j.sciaf.2022.e01275.

[25]  P. Karin, A. Tripatara, P. Wai, B.-S. Oh, C. Charoenphonphanich, N. Chollacoop, and H. Kosaka, “Influence of ethanol-biodiesel blends on diesel engines combustion behavior and particulate matter physicochemical characteristics,” Case Studies in Chemical and Environmental Engineering, vol. 6, June, 2022, Art. no. 100249,  doi: 10.1016/j.cscee.2022.100249.

[26]  A. C. C. Rodrigues, “Policy, regulation, development and future of biodiesel industry in Brazil,” Cleaner Engineering and Technology, vol. 4, 2021, Art. no. 100197, doi: 10.1016/j. clet.2021.100197.

[27]  S. M. Palash, H. H. Masjuki, M. A. Kalam, B. M. Masum, A. Sanjid, and M. J. Abedin, “State of the art of NOx mitigation technologies and their effect on the performance and emission characteristics of biodiesel-fueled Compression Ignition engines,” Energy Conversion Management, vol. 76, pp. 400–420, 2013, doi: 10.1016/j. enconman.2013.07.059.

[28]  P. Emberger, D. Hebecker, P. Pickel, E. Remmele, and K. Thuneke, “Ignition and combustion behavior of vegetable oils after injection in a constant volume combustion chamber,” Biomass Bioenergy, vol. 78, pp. 48–61, 2015, doi: 10.1016/j.biombioe.2015.04.009.

[29]  M. Sriariyanun, “Response surface methodology for optimization of biodiesel production by Acinetobacter baylyi,” KMUTNB International Journal of Applied Science and Technology, vol. 7, no. 4, pp. 47–52, 2014, doi: 10.14416/ j.ijast.2014.09.003.

[30]  A. D. Burmana, R. Tambun, B. Haryanto, M. Sarah, and V. Alexander, “Recycling heterogeneous catalyst waste in biodiesel production using methanol and hydrochloric acid: A case study on the washing effect with lauric acid as raw material,” Case Studies in Chemical and Environmental Engineering, vol. 8, Jul. 2023, Art. no. 100510, doi: 10.1016/j.cscee.2023.100510.

[31]  J. Prasetyo, D. Kusmardini, T. N. Sa'adah, D. P. Sari, D. Dahnum, N. Adelia, E. Kurniati, A. Wibisana, H. Hidayat, and S. T. C. L. Ndruru, “Optimization of used cooking oil for biodiesel using CaO-derived of bovine bone catalyst,” South African Journal of Chemical Engineering, vol. 48, pp. 95–102, Aug. 2024, doi: 10.1016/ j.sajce.2024.01.008.

[32]  E. Lugo-Arias, J. Lugo-Arias, S. B. Vargas, M. A. de la Puente Pacheco, I. B. Granados, C. B. Heras, and D. T. Hernández, “Determinants of the competitiveness of world palm oil exports: A cointegration analysis,” Transnational Corporations Review, vol. 16, no. 3, 2024, doi: 10.1016/j.tncr.2024.200063.

[33]  J. A. M. Vargas, J. O. Ortega, M. B. C. dos Santos, G. Metzker, E. Gomes, and M. Boscolo, “A new synthetic methodology for pyridinic sucrose esters and their antibacterial effects against Gram-positive and Gram-negative strains,” Carbohydrate Research, vol. 489, Feb. 2020, Art. no. 107957, doi: 10.1016/j.carres. 2020.107957.

[34]  C. Sanjurjo, P. Oulego, M. Bartolomé, E. Rodríguez, R. Gonzalez, and A. Hernández Battez, “Biodiesel production from the microalgae Nannochloropsis gaditana: Optimization of the transesterification reaction and physicochemical characterization,” Biomass Bioenergy, vol. 185, May 2024, doi: 10.1016/j.biombioe.2024.107240.

[35]  S. N. Gebremariam and J. M. Marchetti, “Biodiesel production through sulfuric acid catalyzed transesterification of acidic oil: Techno-economic feasibility of different process alternatives,” Energy Conversion Management, vol. 174, pp. 639–648, 2018, doi: 10.1016/j.enconman.2018.08.078.

[36]  D. T. Oyekunle, E. A. Gendy, M. Barasa, D. O. Oyekunle, B. Oni, and S. K. Tiong, “Review on utilization of rubber seed oil for biodiesel production: Oil extraction, biodiesel conversion, merits, and challenges,” Cleaner Engineering and Technology, vol. 21, Jul. 2024, Art. no. 100773, doi: 10.1016/j.clet.2024.100773.

[37]  U. Wangrakdiskul and N. Yodpijit, “Trends Analysis and Future of Sustainable Palm Oil in Thailand,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 1, pp. 21–32, 2015, doi: 10.14416/j.ijast.2015.01.001.

[38]  Z. Mayandi and Suharjito, “Palm oil-based biodiesel industry sustainability model using dynamic systems to balance food, energy, and export allocations,” Smart Agricultural Technology, vol. 7, Feb. 2014, Art. no. 100421, doi: 10.1016/j.atech.2024.100421.

[39]  S. Phukapak and C. Phukapak, “Design and development of the separation and extraction of palm oil by using screw extractor machine,” Applied Science and Engineering Progress, vol. 12, no. 2, pp. 83–94, 2019, doi: 10.14416/j.ijast. 2018.10.006.

[40]  S. C. Iweka, O. Akpomedaye, A. O. Emu, and T. F. Adepoju, “Impact of optimization parameters on green sustainable oil from ripe palm kernel seeds for energy utilities: A machine learning approach,” Scientific African, vol. 23, Sep. 2024, Art. no. e02097, doi: 10.1016/j.sciaf.2024. e02097.

[41]  M. I. Alkhalaf, G. C. Churchill, and M. E. S. Mirghani, “Chemical composition and antioxidant/ antibacterial depictions of Zahidi date palm (Phoenix dactylifera) kernel oil,” Journal King Saud University-Science, vol. 35, no. 7, 2023, Art. no. 102817, doi: 10.1016/j.jksus.2023.102817.

[42]  E. Kurniasih, R. Rahmi, D. Darusman, and M. D. Supardan, “Synthesis of sucrose ester through enzymatic esterification and stability analysis as food emulsifier,” E3S Web of Conferences, vol. 373, pp. 1–9, 2023, doi: 10.1051/e3sconf/ 202337304014.

[43]  W. Moonsrikaew, N. Akkarawatkhoosith, T. Tongtummachat, A. Kaewchada, K.-Y. A. Lin, E. Rebrov, and A. Jaree, “Bio-jet fuel production from crude palm kernel oil under hydrogen-nitrogen atmosphere in a fixed-bed reactor by using Pt/C as catalyst,” Energy Conversion and Management: X, vol. 20, Jun. 2023, Art. no. 100471, doi: 10.1016/j.ecmx. 2023.100471.

[44]  G. Mendow, N. S. Veizaga, B. S. Sánchez, and C. A. Querini, “Biodiesel production by two-stage transesterification with ethanol by washing with neutral water and water saturated with carbon dioxide,” Bioresource Technology, vol. 118, pp. 598–602, 2012, doi: 10.1016/j. biortech.2012.05.026.

[45]  A. Saydut, S. Erdogan, A. B. Kafadar, C. Kaya, F. Aydin, and C. Hamamci, “Process optimization for production of biodiesel from hazelnut oil, sunflower oil, and their hybrid feedstock,” Fuel, vol. 183, pp. 512–517, 2016, doi: 10.1016/j.fuel.2016.06.114.

[46]  S. Balamurugan, C. Gokul, S. A. T. Dheen, S. J. Eashwar, and N. A. Kumar, “Application of grey relational analysis in biodiesel production from linseed oil using novel eggshell catalyst,” Material Today Proceeding, vol. 45, pp. 1962–1969, 2021, doi: 10.1016/j.matpr.2020.09.255.

[47]  T. Balamurugan, A. Arun, and G. B. Sathishkumar, “Biodiesel derived from corn oil – A fuel substitute for diesel,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 772–778, 2018, doi: 10.1016/j.rser.2018.06.048.

[48]  M. L. Pisarello, B. D. Costa, G. Mendow, and C. A. Querini, “Esterification with ethanol to produce biodiesel from high acidity raw materials: Kinetic studies and analysis of secondary reactions,” Fuel Processing Technology, vol. 91, no. 9, pp. 1005–1014, 2010, doi: 10.1016/j.fuproc.2010.03.001.

[49]  N. Akkarawatkhoosith, T. Bangjang, A. Kaewchada, and A. Jaree, “Biodiesel production from rice bran oil fatty acid distillate via supercritical hydrolysis–esterification–transesterification in a microreactor,” Energy Reports, vol. 9, pp. 5299–5305, 2023, doi: 10.1016/j.egyr.2023.04.348.

[50]  M. Manríquez-Ramírez, R. Gómez, J. G. Hernández-Cortez, A. Zúñiga-Moreno, C. M. Reza-San Germán, and S. O. Flores-Valle, “Advances in the transesterification of triglycerides to biodiesel using MgO-NaOH, MgO-KOH and MgO-CeO2 as solid basic catalysts,” Catalysis Today, vol. 212, pp. 23–30, 2013, doi: 10.1016/j.cattod.2012.11.005.

[51]  S. A. Fernandes, R. Natalino, M. J. Da Silva, and C. F. Lima, “A comparative investigation of palmitic acid esterification over p-sulfonic acid calix[4]arene and sulfuric acid catalysts via 1H NMR spectroscopy,” Catalysis Communications, vol. 26, pp. 127–131, 2012, doi: 10.1016/j. catcom.2012.05.007.

[52]  I. Reyero, G. Arzamendi, S. Zabala, and L. M. Gandía, “Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel,” Fuel Processing Technology, vol. 129, pp. 147–155, 2015, doi: 10.1016/j.fuproc.2014.09.008.

[53]  M. J. Goff, N. S. Bauer, S. Lopes, W. R. Sutterlin, and G. J. Suppes, “Acid-catalyzed alcoholysis of soybean oil,”Journal of the American Oil Chemists’ Society, vol. 81, no. 4, pp. 415–420, 2004, doi: 10.1007/s11746-004-0915-6.

[54]  SNI 01-0003-1987: Palm Kernel Oil, UDC.665-35, 1987, [Online]. Available: http://www.hybridenergy. co.th/board/index.php/product-type-/2011-11-17-19-16-14

[55]  Official Methods and Recommended Practices of the AOCS, Preparation of Methyl Ester of Fatty Acids. 6th ed. Urbana, Illinois: American Oil Chemist Society, pp. 1–2, 1998.

[56]  IOPRI, “Oil chemical physics testing work instruction-density,” Indonesian Oil Palm Research, p. 1, 2004.

[57]  M. D. Supardan, S. Satriana, and M. Mahlinda, “Biodiesel production from waste cooking oil using hydrodynamic cavitation,” MAKARA Journal of Technology Series, vol. 16, no. 2, 2013, doi: 10.7454/mst.v16i2.1515.

[58]  J. M. Marchetti and A. F. Errazu, “Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides,” Biomass Bioenergy, vol. 32, no. 9, pp. 892–895, 2008, doi: 10.1016/j.biombioe.2008.01.001.

[59]  R. A. Ahmed, S. Rashid, and K. Huddersman, “Esterification of stearic acid using novel protonated and crosslinked amidoximated polyacrylonitrile ion exchange fibres,” Journal of Industrial and Engineering Chemistry, vol. 119, pp. 550–573, 2023, doi: 10.1016/j.jiec. 2022.12.001.

[60]  C. A. Andrade-Tacca, C.-C. Chang, Y.-H. Chen, D.-R. Ji, Y.-Y. Wang, Y.-Q. Yen, and C.-Y. Chang, “Reduction of FFA in jatropha curcas oil via sequential direct-ultrasonic irradiation and dosage of methanol/sulfuric acid catalyst mixture on esterification process,” Energy Conversion Management, vol. 88, pp. 1078–1085, 2014, doi: 10.1016/j.enconman.2014.09.020.

[61]  S. Asha, Dimethyl Sulfate, 3rd ed., Amsterdam, Netherlands: Elsevier, 2014. doi: 10.1016/B978- 0-12-386454-3.01219-7.

[62]  N. Akkarawatkhoosith, A. Kaewchada, and A. Jaree, “Modification of palm kernel oil structure with fatty acid distillate of rice bran oil in an enzymatic fixed-bed mini-reactor,” Cleaner Engineering and Technology, vol. 4, 2021, Art. no. 100183, doi: 10.1016/j.clet.2021.100183.

[63]  T. L. Alleman, E. D. Christensen, and B. R. Moser, “Improving biodiesel monoglyceride determination by ASTM method D6584-17,” Fuel, vol. 241, pp. 65–70, 2019, doi: 10.1016/ j.fuel.2018.12.019.

[64]  F. D. Pitt, A. M. Domingos, and A. A. C. Barros, “Purification of residual glycerol recovered from biodiesel production,” South African Journal of Chemical Engineering, vol. 29, pp. 42–51, 2019, doi: 10.1016/j.sajce.2019.06.001.

[65]  P. Saetiao, N. Kongrit, C. K. Cheng, J. Jitjamnong, C. Direksilp, and N. Khantikulanon, “Catalytic conversion of palm oil into sustainable biodiesel using rice straw ash supported-calcium oxide as a heterogeneous catalyst: Process simulation and techno-economic analysis,” Case Studies in Chemical and Environmental Engineering, vol. 8, Jul. 2023, Art. no. 100432, doi: 10.1016/j.cscee.2023.100432.

[66]  Abdullah, R. N. R. Sianipar, D. Ariyani, and I. F. Nata, “Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts,” Sustainable Environment Research, vol. 27, no. 6, pp. 291–295, 2017, doi: 10.1016/j.serj. 2017.07.002.

[67]  L. Novita, Safni, Emriadi, F. A. de Freitas, S. Fauzia, and R. Zein, “Enhanced conversion of used palm cooking oil to biodiesel by a green and recyclable palm kernel shell ash-derived catalyst: Process optimization by response surface methodology,” Case Studies in Chemical and Environmental Engineering, vol. 9, Jan. 2024, Art. no. 100678, doi: 10.1016/j.cscee.2024.100678.

[68]  F. Chai, F. Cao, F. Zhai, Y. Chen, X. Wang, and Z. Su, “Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst,” Advanced Synthesis and Catalysis, vol. 349, no. 7, pp. 1057–1065, 2007, doi: 10.1002/adsc.200600419.

[69]  Y. Zhou, K. Li, and S. Sun, “Simultaneous esterification and transesterification of waste phoenix seed oil with a high free fatty acid content using a free lipase catalyst to prepare biodiesel,” Biomass Bioenergy, vol. 144, Nov. 2021, Art. no. 105930, doi: 10.1016/j.biombioe. 2020.105930.

[70]  A. Kamhoua, G. M. Mengounou, L. Monkam, and A. Moukengue Imano, “Contribution to the use of palm kernel oil methyl esters as liquid bio-insulators in distribution transformers: Experimentation and simulation of heat transfer,” Results in Engineering, vol. 22, May 2024, Art. no. 102316, doi: 10.1016/j.rineng. 2024.102316.

[71]  G. Cao, C. Ding, D. Ruan, Z. Chen, H. Wu, Y. Hong, and Z. Cai, “Gas chromatography-mass spectrometry based profiling reveals six monoglycerides as markers of used cooking oil,” Food Control, vol. 96, pp. 494–498, 2019, doi: 10.1016/j.foodcont.2018.10.013.

[72]  N. Saengprachum and S. Pengprecha, “Preparation and characterization of aluminum oxide coated extracted silica from rice husk ash for monoglyceride removal in crude biodiesel production,” Journal of The Taiwan Insitute of Chemical Engineering, vol. 58, pp. 441–450, 2016, doi: 10.1016/j.jtice.2015.06.037.

[73]  G. M. Chupka, J. Yanowitz, G. Chiu, T. L. Alleman, and R. L. McCormick, “Effect of saturated monoglyceride polymorphism on low-temperature performance of biodiesel,” Energy and Fuels, vol. 25, no. 1, pp. 398–405, 2011, doi: 10.1021/ef1013743.

[74]  L. Mendoza, V. Plata, and P. Gauthier-Maradei, “Effect of minor components on chemical composition, thermal behavior, and morphology of biodiesel precipitate,” Fuel, vol. 228, pp. 323–331, 2018 doi: 10.1016/j.fuel.2018.04.106.

[75]  R. O. Dunn, “Effects of monoacylglycerols on the cold flow properties of biodiesel,” Journal of the American Oil Chemists’ Society, vol. 89, no. 8, pp. 1509–1520, 2012, doi: 10.1007/ s11746-012-2045-7.

[76]  I. Paryanto, T. Prakoso, and M. Gozan, “Determination of the upper limit of monoglyceride content in biodiesel for B30 implementation based on the measurement of the precipitate in a Biodiesel–Petrodiesel fuel blend (BXX),” Fuel, vol. 258, Aug. 2019, Art. no. 116104, doi: 10.1016/j.fuel.2019.116104.

[77]  S. N. K. Reddy and M. M. Wani, “A comprehensive review on effects of nanoparticles-antioxidant additives-biodiesel blends on performance and emissions of diesel engine,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 285–298, 2020, doi: 10.14416/J.ASEP.2020.06.002.

[78]  Rahmawati, “Prediction for biodiesel quality using the dielectric properties,” IOP Conference Series: Materials Science and Engineering, vol. 536, no. 1, 2019, doi: 10.1088/1757-899X/536/ 1/012057.

[79]  I. M. Atadashi, “Purification of crude biodiesel using dry washing and membrane technologies,” Alexandria Engineering Journal, vol. 54, no. 4, pp. 1265–1272, 2015, doi: 10.1016/j.aej.2015. 08.005.

[80]  Badan Standarisasi Nasional, SNI Biodiesel 7128-2015, 2015.

[81]  G. Singh, C. Jeyaseelan, K. K. Bandyopadhyay, and D. Paul, “Comparative analysis of biodiesel produced by acidic transesterification of lipid extracted from oleaginous yeast Rhodosporidium toruloides,” 3 Biotech, vol. 8, no. 10, pp. 1–13, 2018, doi: 10.1007/s13205-018-1467-9.

[82]  P. K. Bose, “Empirical approach predicting the cetane number of biodiesel,” International Journal of Automative Technology, vol. 10, no. 4, pp. 421–429, 2009, doi: 10.1007/s12239-009-0048-7.

[83]  Darwin, M. Thifal, M. Alwi, Z. Murizal, A. Pratama, and M. Rizal, “The synthesis of biodiesel from palm oil and waste cooking oil via electrolysis by various electrodes,” Case Studies in Chemical and Environmental Engineering, vol. 8, Jul. 2023, Art. no. 100512, doi: 10.1016/j.cscee.2023.100512.

[84]  P. Kanthasamy and V. Arul Mozhi Selvan, “FTIR and GCMS analysis on useful methyl ester compound from industrial waste animal fleshing oil (WAFO),” Material Today Proceeding, vol. 46, pp. 10072–10078, 2019, doi: 10.1016/j.matpr.2021.06.255.

[85]  M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, and M. A. Rahman, “Fourier Transform Infrared (FTIR) Spectroscopy,” in Membrane Characterization. Amsterdam, Netherlands: Elsevier, pp. 3–29, 2017, doi: 10.1016/B978-0-444-63776-5.00001-2.

[86]  H. Nosal, K. Moser, M. Warzała, A. Holzer, D. Stańczyk, and E. Sabura, “Selected fatty acids esters as potential PHB-V bioplasticizers: Effect on mechanical properties of the polymer,” Journal of Polymer and the Environment, vol. 29, no. 1, pp. 38–53, 2020, doi: 10.1007/ s10924-020-01841-5.

[87]  P. L. Hariani, F. Riyanti, and A. Fadilah, “The influence of time reaction to characteristic of methyl ester sulfonate from seed oil ketapang,” Indonesian Journal of Fundamental and Applied Chemistry, vol. 1, no. 1, pp. 14–18, 2016, doi: 10.24845/ijfac.v1.i1.14.

Full Text: PDF

DOI: 10.14416/j.asep.2024.09.009

Refbacks

  • There are currently no refbacks.