Page Header

Fiber Surface Treatments for Lightweight PA6 Composites

Rungsima Yeetsorn, Waritnan Wanchan, Mesum Abbas, Yaowaret Maiket, Gaurav Kumar Yogesh, Budsaba Karoonsit, Edmund Haberstroh

Abstract


Natural fiber-reinforced composites (NFRC) have gained significant attention due to their eco-friendliness, affordability, and excellent mechanical properties. However, inadequate interfacial bonding between the fiber and the polymer matrix often results in inferior mechanical and thermal properties. Various surface treatments, including alkali, silane, and plasma treatments, have been developed to address this issue by modifying the fiber surface. These treatments have been shown to improve the interfacial bonding, leading to enhanced mechanical strength and thermal stability of natural fiber-reinforced PA6 composites (NFRC-PA6). In this study, we applied these surface treatments and evaluated their impact through mechanical and thermal testing. The results indicate significant improvements in the composites' properties, although challenges such as optimizing treatment parameters and ensuring uniformity persist. Future research should focus on overcoming these challenges and exploring innovative treatments to further advance the application of NFRC-PA6 composites.

Keywords



[1]    S. Shafiee and E. Topal, “When will fossil fuel reserves be diminished?,” Energy Policy, vol. 37, pp. 181–189, 2009, doi: 10.1016/j.enpol.2008.08.016.

[2]    K. Panyasart, N. Chaiyut, T. Amornsakchai, and O. Santawitee, “Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites,” Energy Procedia, vol. 56, pp. 406–413, 2014, doi: 10.1016/j.egypro. 2014.07.173.

[3]    A. Shahzad, C. A. Teacă, and F. Tanasă, “1 - Natural fibers and surface treatment methods,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, pp. 1–18, 2022, doi: 10.1016/B978-0-12-821863-1.00001-6.

[4]    X. H. Shi, X. L. Li, Y. M. Li, Z. Li, and D. Y. Wang, “Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review,” Composites Part B Engineering, vol. 233, 2022, Art. no. 109663, doi: 10.1016/j.compositesb. 2022.109663.

[5]    D. J. G. E. Ozen, A. Kiziltas, and E. E. Kiziltas, “Natural fiber blend—Nylon 6 composites,” Polymer Composites, vol. 34, pp. 544–553, 2013, doi: 10.1002/pc.22463.

[6]    L. Gao, F. Yan, S. Dai, L. Zhao, J. Wang, Y. Liu, Y. Ao, and L. Liu, “Synthesis of hyperbranched polyurethane sizing agent with high-solid content via self-catalytic method for improving interfacial adhesion of CF/PA6 composites,” Composites Science and  Technology, vol. 228, 2022, Art. no. 109664, doi: 10.1016/ j.compscitech.2022.109664.

[7]    R. Singh, R. Kumar, and N. Ranjan, “Sustainability of recycled ABS and PA6 by banana fiber reinforcement: Thermal, mechanical and morphological properties,” Journal of The Institution of Engineers (India): Series C, vol. 100, 351–360, 2019, doi: 10.1007/ s40032-017-0435-1.

[8]    F. Alexis, S. Castagnet, C. Nadot-Martin, G. Robert, and P. Havet, “Effect of severe thermo-oxidative aging on the mechanical behavior and fatigue durability of short glass fiber reinforced PA6/6.6,” International Journal of Fatigue, vol. 166, 2023, Art. no. 107280, doi: 10.1016/ j.ijfatigue.2022.107280.

[9]    N. Christ, J. Montesano, and J. Hohe, “Experimental investigation of carbon long fiber reinforced polyamide 6 exposed to environmental conditions,” Proceedings in Applied Mathematics & Mechanics, vol. 22, pp. 1–7,  2023, doi: 10.1002/pamm.202200166.

[10]  L. Yu, Q. Hu, T. Li, J. Zhang, S. Chen, Z. Xu, S. Chen, and D. Zhang, “Ultrahigh flowability and excellent mechanical performance of glass fiber/PA6 composites prepared by hyperbranched polymers,” Macromolecular Materials and Engineering, vol. 308, pp. 1–8, 2023, doi: 10.1002/mame.202300012.

[11]  V. Unnikrishnan, O. Zabihi, Q. Li, M. Ahmadi, M. R. G. Ferdowsi, T. Kannangara, P. Blanchard, A. Kiziltas, P. Joseph, and M. Naebe, “Multifunctional PA6 composites using waste glass fiber and green metal organic framework/graphene hybrids,” Polymer Composites, vol. 43, no. 9, pp. 5877–5893, 2022, doi: 10.1002/pc.27002.

[12]  I. Lasenko, J. V. Sanchaniya, S. P. Kanukuntla, Y. Ladani, A. Viluma-Gudmona, O. Kononova, V. Lusis, I. Tipans, and T. Selga, “The mechanical properties of nanocomposites reinforced with PA6 electrospun nanofibers,” Polymers (Basel), vol. 15, 2023, doi: 10.3390/ polym15030673.

[13]  C. W. Choi, J. W. Jin, H. Lee, M. Huh, and K. W. Kang, “Optimal polymerization conditions in thermoplastic-resin transfer molding process for mechanical properties of carbon fiber-reinforced PA6 composites using the response surface method,” Fibers Polymers, vol. 20, pp. 1021–1028, 2019, doi:10.1007/s12221-019-8901-4.

[14]  P. K. Sridhara and F. Vilaseca, “Assessment of fiber orientation on the mechanical properties of PA6/Cellulose composite,” Applied Sciences, vol. 10, 2020, doi: 10.3390/app10165565.

[15]  S. Wasti, S. Kore, P. Yeole, H. Tekinalp, S. Ozcan, and U. Vaidya, “Bamboo fiber reinforced polypropylene composites for transportation applications,” Frontiers in Materials, vol. 9, pp. 1–14, 2022, doi: 10.3389/fmats.2022.967512.

[16]  K. tak Lau, P. yan Hung, M. H. Zhu, and D. Hui, “Properties of natural fibre composites for structural engineering applications,” Composites Part B Engineering, vol. 136, pp. 222–233, 2018, doi: 10.1016/j.compositesb.2017.10.038.

[17]  H. Awais, Y. Nawab, A. Amjad, A. Anjang, H. M. Akil, and M. S. Zainol Abidin, “Environmental benign natural fibre reinforced thermoplastic composites: A review,” Composites Part C Open Access, vol. 4, 2021, Art. no. 100082, doi: 10.1016/j.jcomc.2020.100082.

[18]  F. Tanasă, M. Nechifor, C. A. Teacă, and M. C. Stanciu, “Physical methods for the modification of the natural fibers surfaces,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, pp. 125–146, 2022, doi: 10.1016/B978-0-12-821863-1.00006-5.

[19]  S. I. Magagula, M. J. Mochane, G. G. Lenetha, J. S. Sefadi, T. H. Mokhothu, and T. C. Mokhena, “The effect of alkaline treatment on natural fibers/biopolymer composites,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, 2022, doi: 10.1016/ B978-0-12-821863-1.00002-8.

[20]  M. Ravi, R. R. Dubey, A. Shome, S. Guha, C. and  Anil Kumar, “Effect of surface treatment on Natural fibers composite,” IOP Conference Series: Materials Science and Engineering, vol. 376, pp. 1–5, 2018, doi: 10.1088/1757-899X/ 376/1/012053.

[21]  T. H. Mokhothu, A. Mtibe, T. C. Mokhena, and  M. J. Mochane, “Influence of silane modification on the properties of natural fibers and its effect on biocomposites,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, 2022, doi: 10.1016/B978-0-12-821863-1.00004-1.

[22]  S. Tiwari and J. Bijwe, “Surface treatment of carbon fibers - A review,” Procedia Technology, vol. 14, pp. 505–512, 2014, doi: 10.1016/ j.protcy.2014.08.064.

[23]  R. N. Darie-Nita, D. E. Ciolacu, and R. A. Vlase, “Biological pretreatments of lignocellulosic fibers and their effects on biocomposites performance,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, 2022, doi: 10.1016/B978-0-12-821863-1.00007-7.

[24]  J. I. Kadokawa, “Surface derivatization and grafting on self-assembled chitin nanofibers for modification, functionalization, and application,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, 2022, doi: 10.1016/ B978-0-12-821863-1.00008-9.

[25]  E. A. M. Hassan, A. E. A. Elabid, E. O. Bashier, and T. H. H. Elagib, “The effect of carbon fibers modification on the mechanical properties of polyamide composites for automobile applications,” Mechanics of Composite Materials, vol. 58, pp. 369–382, 2022, doi: 10.22364/mkm.58.2.08.

[26]  L. Sang, C. Wang, Y. Wang, and W. Hou, “Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites,” Composites Part B Engineering, vol. 153, pp. 306–314, 2018, doi: 10.1016/ j.compositesb.2018.08.138.

[27]  B. Pinpathomrat, K. Yamada, and A. Yokoyama, “The effect of UV irradiation on polyamide 6/carbon-fiber composites based on three-dimensional printing,” SN Applied Sciences, vol. 2, pp. 1–9, 2020, doi: 10.1007/s42452-020-03319-4.

[28]  J. Li and C. L. Cai, “The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites,” Current Applied Physics, vol. 11, pp. 50–54, 2011, doi: 10.1016/ j.cap.2010.06.017.

[29]  D. Zhao, H. Hamada, and Y. Yang, “Influence of polyurethane dispersion as surface treatment on mechanical, thermal and dynamic mechanical properties of laminated woven carbon-fiber-reinforced polyamide 6 composites,” Composites Part B Engineering, vol. 160, pp. 535–545, 2019, doi: 10.1016/j.compositesb.2018.12.105.

[30]  S. S. Kumar and G. Kanagaraj, “Investigation on mechanical and tribological behaviors of PA6 and graphite-reinforced PA6 polymer composites,” Arabian Journal for Science and Engineering, vol. 41, pp. 4347–4357, 2016, doi: 10.1007/ s13369-016-2126-2.

[31]  A. Elsabbagh, L. Steuernagel, and J. Ring, “Natural Fibre/PA6 composites with flame retardance properties: Extrusion and characterisation,” Composites Part B Engineering, vol. 108, pp. 325–333, 2017, doi: 10.1016/j.compositesb. 2016.10.012.

[32]  Z. Baccouch, A. Hamdi, H. Nouri, and S. Guessasma, “Creep behavior of flax fiber-reinforced polyamide 6 composites: Experimental and numerical studies,” Polymer Bulletin, vol. 79, pp. 9941–9956, 2022, doi: 10.1007/s00289-021-03976-4.

[33]  Z. Huang, Q. Yin, Q. Wang, P. Wang, T. Liu, and L. Qian, “Mechanical properties and crystallization behavior of three kinds of straws/nylon 6 composites,” International Journal of Biological Macromolecules, vol.  103, pp. 663–668, 2017,  doi: 10.1016/j.ijbiomac.2017.05.121.

[34]  F. J. Alonso-Montemayor, Q. Tarrés, Oliver-Ortega, F. X. Espinach, R. I. Narro-Céspedes, A. O. Castañeda-Facio, and M. Delgado-Aguilar, “Enhancing the mechanical performance of bleached hemp fibers reinforced polyamide 6 composites: A competitive alternative to commodity composites,” Polymers (Basel), vol. 12, 2020, doi: 10.3390/POLYM12051041.

[35]  A. Arsad, N. L. Suradi, A. R. Rahmat, and J. M. Danlami, “The influence of kenaf fiber as reinforcement on recycled polypropylene/recycled Polyamide-6 composites,” International Journal of Plastics Technology, vol. 17, pp. 149–162,  2013, 149–162. doi: 10.1007/s12588-013-9055-7.

[36]  E. E. Kiziltas, H. Yang, N. M. Systems, A. Kiziltas, F. M. Company, and S. B. Torun, “Thermal analysis of Polyamide 6 composites filled by natural fiber blend,” BioResources, vol. 11, pp. 4758–4769, 2016, doi: 10.15376/biores. 11.2.4758-4769.

[37]  S. Liang, H. Nouri, and E. Lafranche, “Thermo-compression forming of flax fibre-reinforced polyamide 6 composites: Influence of the fibre thermal degradation on mechanical properties,” Journal of Materials Science, vol. 50, pp. 7660–7672, 2015, doi: 10.1007/s10853-015-9330-4.

[38]  N. M. Barkoula, B. Alcock, N. O. Cabrera, and T. Peijs, “Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene,” Polymers, vol. 16, pp. 101–113, 2008, doi: 10.1002/pc.

[39]  R. P. de Melo, M. F. V. Marques, P. Navard, and  N. P. Duque, “Degradation studies and mechanical properties of treated curauá fibers and microcrystalline cellulose in composites with polyamide 6,” Journal of Composite Materials, vol. 51, pp. 3481–3489, 2017, doi: 10.1177/0021998317690446.

[40]  S. Thitithanasarn, K. Yamada, U. S. Ishiaku, and  H. Hamada, “The Effect of curative concentration on thermal and mechanical properties of flexible epoxy coated jute fabric reinforced polyamide 6 composites,” Open Journal of Composite Materials, vol. 2,  pp. 133–138, 2012, doi: 10.4236/ojcm.2012.24016.

[41]  N. Vellguth, T. Rudeck, M. Shamsuyeva, F. Renz, and H. J. Endres, “Thermal stability of natural fibers via thermoset coating for application in engineering thermoplastics,” Key Engineering Materials, vol. 809, pp. 433–438, 2019, doi: 10.4028/www.scientific.net/KEM.809.433.

[42]  K. Wakabayashi, S. H. E. Vancoillie, M. G. Assfaw, D. H. Choi, F. Desplentere, and A. W. V. Vuure, “Low-temperature compounding of flax fibers with polyamide 6 via solid-state shear pulverization: Towards viable natural fiber composites with engineering thermoplastics,” Polymer Composites, vol. 40, pp. 3285–3295, 2019, doi: 10.1002/pc.25184.

[43]  A. El-Sabbagh, L. Steuernagel, J. Ring, and O. Toepfer, “Development of natural fiber/ engineering plastics composites with flame retardance properties,” AIP Conference Proceedings, vol. 1779, 2016, doi: 10.1063/1.4965490.

[44]  J. Liang, Y. Xu, Z. Wei, P. Song, G. Chen, and  W. Zhang, “Mechanical properties, crystallization and melting behaviors of carbon fiber-reinforced PA6 composites,” Journal of Thermal Analysis and Calorimetry, vol. 115, pp. 209–218, 2014, doi: 10.1007/s10973-013-3184-2.

[45]  L. B. Manfredi, E. Rodríguez, M. Wladyka-Przybylak, and A. Vázquez, “Thermal properties and fire resistance of jute-reinforced composites,” Composite Interfaces, vol. 17, pp. 663–675, 2010, doi: 10.1163/092764410X513512.

[46]  O. Oulidi, A. Nakkabi, I. Elaraaj, M. Fahim, and  N. El Moualij, “Incorporation of olive pomace as a natural filler in to the PA6 matrix: Effect on the structure and thermal properties of synthetic Polyamide 6,” Chemical Engineering Journal Advances, vol. 12, 2022, Art. no. 100399, doi: 10.1016/j.ceja.2022.100399.

[47]  C. Albano, J. González, M. Ichazo, and D. Kaiser, “Thermal stability of blends of polyolefins and sisal fiber,” Polymer Degradation and Stability, vol. 66, pp. 179–190, 1999, doi: 10.1016/S0141-3910(99)00064-6.

[48]  N. Ezekiel, B. Ndazi, C. Nyahumwa, and S. Karlsson, “Effect of temperature and durations of heating on coir fibers,” Industrial Crops and Products, vol. 33, pp. 638–643, 2011, doi: 10.1016/j.indcrop.2010.12.030.

[49]  F. Tomczak, T. H. D. Sydenstricker, and K. G. Satyanarayana, “Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers,” Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 1710–1721, 2007, doi: 10.1016/j.compositesa. 2007.02.004.

[50]  T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, “Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites,” Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 499–505, 2010, doi: 10.1016/j.compositesa. 2009.12.006.

[51]  Y. Y. Lim, A. Miskon, A. M. A. Zaidi, M. M. H. M. Ahmad, and M. A. Bakar, “Structural characterization analyses of low brass filler biomaterial for hard tissue implanted scaffold applications,” Materials (Basel), vol. 15, 2022, doi: 10.3390/ma15041421.

[52]  Y. Y. Lim, A. Miskon, and A. M. A. Zaidi, “Structural strength analyses for low brass filler biomaterial with anti-trauma effects in articular cartilage scaffold design,” Materials (Basel), vol. 15, pp. 1–17, 2022, doi: 10.3390/ ma15134446.

[53]  H. Wang, G. Ji, Y. Xue, and Y. Liu, “Numerical simulation of the mechanical properties and fracture of SiCp/6061Al composite materials based on microstructure,” Metals (Basel), vol. 13, 2023, doi: 10.3390/met13061016.

[54]  Y. Y. Lim, A. M. A. Zaidi, and A. Miskon, “Combining copper and zinc into a biosensor for anti-chemoresistance and achieving osteosarcoma therapeutic efficacy,” Molecules, vol. 28, 2023, doi: 10.3390/molecules28072920.

[55]  Y. Y. Lim, A. Miskon, and A. M. A. Zaidi, “CuZn complex used in electrical biosensors for drug delivery systems,” Materials (Basel), vol. 15, pp. 1–13, 2022, doi: 10.3390/ma15217672.

[56]  Y. Y. Lim, A. M. A. Zaidi, and A. Miskon, “Composing on-program triggers and on-demand stimuli into biosensor drug carriers in drug delivery systems for programmable arthritis therapy,” Pharmaceuticals, vol. 15, 2022, doi: 10.3390/ph15111330.

[57]  C. A. Teacă, M. C. Stanciu, F. Tanasă, M. Nechifor, and A. Enache, “Surface modification of natural fibers through esterification treatments,” in Surface Treatment Methods of Natural Fibres and their Effects on Biocomposites. Sawston, UK: Woodhead Publishing, pp. 47–65, 2022, doi: 10.1016/B978-0-12-821863-1.00003-X.

[58]  M. Zimniewska and M. Wladyka-Przybylak, “Natural fibers for composite applications. Fibrous and textile materials for composite applications,” Fibrous and Textile Materials for Composite Applications. Singapore: Springer, pp. 171–204, 2016, doi: 10.1007/978-981-10-0234-2_5.

[59]  R. Yeetsorn, “Carbon Nanotubes: A new advanced material rapidly interested scientists,” The Journal of KMITNB, vol. 14, no. 4, pp. 60–64, 2004.

Full Text: PDF

DOI: 10.14416/j.asep.2024.09.004

Refbacks

  • There are currently no refbacks.