Page Header

Enhancing Mechanical Properties of PLA Filaments through Orange Peel Powder Reinforcement: Optimization of 3D Printing Parameters

Muthu Natarajan Shunmugam, Senthil Sankaranarayanan, Narayanasamy Pandiarajan, Balasubramanian Karthekeyan Parrthipan, Balasundar Pandiarajan

Abstract


This study investigates the augmentation of the mechanical properties of Polylactic Acid (PLA) filaments by incorporating Orange Peel Powder (OPP) as an eco-friendly filler for 3D printing applications. The study delves into optimizing the printing parameters to achieve enhanced mechanical characteristics while maintaining printability. Various 3D printing process parameters were analyzed systematically to assess their impact on tensile strength, flexural strength, and impact resistance. A thorough investigation was conducted to determine the impact of layer height, infill density, and printing speed on the overall mechanical properties of the printed specimens. The findings demonstrate that adding 25% OPP significantly enhances the mechanical strength of the PLA composite without compromising printability, with optimal concentration and printing parameters identified. Thermo gravimetric study reveals that the PLA/OPP composite filament has a higher maximum thermal degradation temperature of 329 °C, compared to the PLA’s temperature of 316 °C. This research contributes to advancing the development of sustainable and mechanically robust materials for additive manufacturing, offering insights into the fabrication of PLA-based biodegradable composites tailored for specific applications in various industries.

Keywords



[1]    A. Sola and A. Trinchi, Fused Deposition Modeling of Composite Materials. Sawston, UK: Woodhead Publishing, 2023.

[2]    G. Rajeshkumar, S. Arvindh Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. P. Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar, and A. R. Anuf, “Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review,” Journal of Cleaner Production, vol. 310, 2021, Art. no. 127483, doi: 10.1016/j.jclepro.2021.127483.

[3]    T. M. Joseph, A. Kallingal, A. M. Suresh, D. K. Mahapatra, M. S. Hasanin, J. Haponiuk, and S. Thomas, “3D printing of polylactic acid: Recent advances and opportunities,” The International Journal of Advanced Manufacturing Technology, vol. 125, pp. 1015–1035, 2023.

[4]    L. Sandanamsamy, W. S. W. Harun, I. Ishak, F. R. M. Romlay, K. Kadirgama, D. Ramasamy, S. R. A. Idris, and F. Tsumori, “A comprehensive review on fused deposition modelling of polylactic acid,” Progress in Additive Manufacturing, vol. 8, pp. 775–799, 2023.

[5]    P. Saini, M. Arora, and M. N. V. R. Kumar, “Poly(lactic acid) blends in biomedical applications,” Advanced Drug Delivery Reviews, vol. 107, pp. 47–59, 2016.

[6]    X. Wang, M. Jiang, Z. Zhou, J. Gou, and   D. Hui, “3D printing of polymer matrix composites: A review and prospective,” Composites Part B: Engineering, vol. 110, pp. 442–458, 2017.

[7]    P. Parandoush and D. Lin, “A review on additive manufacturing of polymer-fiber composites,” Composite Structures, vol. 182, pp. 36–53, 2017.

[8]    M. Calì, G. Pascoletti, M. Gaeta, G. Milazzo, and R. Ambu, “New filaments with natural fillers for FDM 3D printing and their applications in biomedical field,” Procedia Manufacturing, vol. 51, pp. 698–703, 2020.

[9]    A. Romani, R. Suriano, and M. Levi, “Biomass waste materials through extrusion-based additive manufacturing: A systematic literature review,” Journal of Cleaner Production, vol. 386, 2023, Art. no. 135779.

[10] D. V. Lohar, A. M. Nikalje, and P. G. Damle, “Synthesis and characterization of PLA hybrid composites using bio waste fillers,” Materials Today Proceedings, vol. 72, no. 4, pp. 2155–2162, 2023.

[11] S. Khan, K. Joshi, and S. Deshmukh, “A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts,” Materials Today Proceedings, vol. 50, no. 5, pp. 2119–2127, 2022.

[12] D. Croccolo, M. D. Agostinis, S. Fini, M. Mele, G. Olmi, and G. Campana, “Effects of infill temperature on the tensile properties and warping of 3D-printed polylactic acid,” Progress in Additive Manufacturing, vol. 9, pp. 919–934, 2024.

[13] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Experimental Investigation and optimisation of FDM process parameters for build cost and mechanical properties using I-optimal design,” Encyclopedia of Smart Materials, vol. 1, pp. 368–385, 2022.

[14] S. M. Natarajan, S. Senthil, and P. Narayanasamy, “Investigation of mechanical properties of FDM-processed acacia concinna–filled polylactic acid filament,” International Journal of Polymer Science, vol. 1, pp. 1–8, 2022.

[15] N. Lokesh, B. A. Praveena, J. S. Reddy, V. K. Vasu, and S. Vijaykumar, “Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature,” Materials Today Proceedings, vol. 52, pp. 1288–1293, 2022.

[16] V. Raghunathan, V. Ayyappan, S. M. Rangappa and S. Siengchin, “Development of fiber-reinforced polylactic acid filaments using untreated/silane-treated trichosanthes cucumerina fibers for additive manufacturing,” Journal of Elastomers & Plastics, vol. 56, no. 3, pp. 277–292, 2024.

[17] A. Vinod, J. Tengsuthiwat, R. Vijay, M. R. Sanjay and S. Siengchin, “Advancing additive manufacturing: 3D-printing of hybrid natural fiber sandwich (Nona/Soy-PLA) composites through filament extrusion and its effect on thermomechanical properties,” Polymer Composites, vol. 45, no. 9, pp. 7767–778, 2024.

[18] A. Andoko, F. Gapsari, I. Wijatmiko, K. Diharjo, S. M. Rangappa, and S. Siengchin, “Performance of carbon fiber (CF)/Ceiba petandra fiber (CPF) reinforced hybrid polymer composites for lightweight high-performance applications,” Journal of Materials Research and Technology, vol. 27, pp. 7636–7644, 2023.

[19] F. Gapsari, B. Djarot, Darmadi, H. Juliano, S. Hidayatullah, Suteja, S. M. Rangappa, S. Siengchin, “Modification of palm fiber with chitosan-AESO blend coating,” International Journal of Biological Macromolecules, vol. 242, no. 4, 2023, Art. no. 125099.

[20] C. Banroongwongdee, S. Gaewkhem and P. Siritrakul, “Kinetics, Equilibrium, and thermodynamics of methyl orange adsorption onto modified rice husk,” KMUTNB International Journal of Applied Science and Technology, vol. 11, no. 3, pp. 185–197, 2018.

[21] F. Gapsari, L.Djakfar, R. P. Handajani, Y. A. Yusran, S. Hidayatullah, Suteja, S. M. Rangappa, and S. Siengchin, “The application of timoho fiber coating to improve the composite performance,” Results in Engineering, vol. 15, 2022, Art. no. 100499. 

[22] R. Phiri, S. M. Rangappa, S. Siengchin, and D. Marinkovic, “Agro-waste natural fiber sample preparation techniques for bio-composites development: Methodological insights,” Mechanical engineering Series, Facta Universitatis, vol. 21, no. 4, pp. 631–656, 2023. 

[23] B. A. Ahmed, U. Nadeem, A. S. Hakeem, A. Ul-Hamid, M. Y. Khan, M. Younas, and H. A. Saeed, “Printing parameter optimisation of additive manufactured PLA using taguchi design of experiment,” Polymers, vol. 15, no. 22, 2023, Art. no. 4370.

[24] P. Aihemaiti, R. Jia, A. Wurikaixi, H. Jiang, and A. Kasimu, “Study on 3D printing process of continuous polyglycolic acid fiber-reinforced polylactic acid degradable composites,” International Journal of Bioprinting, vol. 9, no. 4, 2023, Art. no. 734. 

[25] N. R. Madhan and S. Senthil, “Characterization of tamarind fruit shell power-reinforced virgin and recycled polypropylene-based 3D-printed composites,” Biomass Conversion and Biorefinery, vol. 14, pp, 13407–13420, 2024.

[26] P.  Ghabezi, T. Flanagan, and N. Harrison, “Short basalt fibre reinforced recycled polypropylene filaments for 3D printing,” Materials Letters, vol. 326, 2022, Art. no. 132942.

[27] V. Chairgulprasert and H.Waehayee, “Removal of methylene blue dye in water using longkong fruit peels,” KMUTNB International Journal of Applied Science and Technology, vol. 11, no. 4, pp. 287–295, 2018. 

[28] D. L. Vinay, R. Keshavamurty, S. Erannagari, A. Gajakosh, Y. D. Dwivedi, D. Bandhu, N. Tamam, and K. K. Saxena, “Parametric analysis of processing variables for enhanced adhesion in metal-polymer composites fabricated by fused deposition modeling,” Journal of Adhesion Science and Technology, vol. 38, no. 3, pp.  331–354, 2023.

[29] J. Nomai, B. Suksut, and A. K. Schlarb, “Crystallization behavior of poly(lactic acid)/ titanium dioxide nanocomposites,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 4, pp. 251–258, 2015.

[30] M. Müller, P. Jirků, V. Šleger, R. K. Mishra, M. Hromasová, and J. Novotný, “Effect of infill density in FDM 3D printing on low-cycle stress of bamboo- filled PLA-based material,” Polymers, vol. 14, no. 22, 2022, Art. no. 4930.

Full Text: PDF

DOI: 10.14416/j.asep.2024.08.011

Refbacks

  • There are currently no refbacks.