Page Header

Efficient Separation of Organic Dyes using Polyvinylidene Fluoride/Polyethylene Glycol-Tin Oxide (PVDF/PEG-SnO2) Nanoparticles Ultrafiltration Membrane

Abdullah Ghanim Saleem, Sama Mohammed Al-Jubouri

Abstract


This work studies developing ultrafiltration (UF) membranes using organic and inorganic additives to remove organic dyes at UF conditions with high effectiveness. Flat sheet (18 wt%) polyvinylidene fluoride (PVDF) membranes were prepared via phase inversion and then developed by adding 6 wt% polyethylene glycol (PEG) as a pore former. Furthermore, the PVDF/PEG membranes were developed by embedding tin oxide nanoparticles (SnO2 NPs) with different contents of 0.3, 0.6, and 0.9 wt%. The prepared membranes were examined for their performance in the dye removal before being characterized using the field emission scanning electron microscope, atomic force microscopy, contact angle, Fourier-transform infrared spectroscopy, surface charge, porosity, mean pore size, tensile strength, and elongation at break. The performance was tested regarding pure water flux (PWF), permeate flux, and dye removal (R%). The effect of dye concentration and pH of the feed solution on the permeate flux and R% was also investigated. In addition, the antifouling features in terms of flux recovery ratio, reversible fouling, irreversible fouling, total fouling, and the R% were studied using the PVDF/PEG membrane and the membrane containing 0.3 wt% of SnO2 NPs. The contact angle decreased from 78.85° to 51.88°, and the PWF rose from 7.16 to 135.71 L/m2.h for PVDF and PVDF/PEG-SnO2 (0.3 wt%) membranes, respectively. The R% of rhodamine B (RhB) slightly decreased from 93.08 to 91.26, and 87.71% for PVDF, PVDF/PEG, and PVDF/PEG-SnO2 (0.3 wt%) membranes, respectively. Then, it increased with increasing NPs concentration up to 90.17 and 92.23% for PVDF/PEG-SnO2 (0.6 wt%) and PVDF/PEG-SnO2 (0.9 wt%) membranes, respectively. Also, the molecular weight cutoff was calculated using RhB as a cationic dye, acid orange 10, and congo red as an anionic dye and it was 520 Da.

Keywords



[1]    S. A. Sadek and S. M. Al-Jubouri, “Structure and performance of polyvinylchloride microfiltration membranes improved by green silicon oxide nanoparticles for oil-in-water emulsion separation,” Materials Today Sustainability, vol. 24, 2023, doi: 10.1016/j.mtsust.2023.100600.

[2]    S. Yadav and S. Kamsonlian, “Progress on the development of techniques to remove contaminants from wastewater a review,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6729, doi: 10.14416/ j.asep.2023.02.001.

[3]    A. M. Ali, K. T. Rashid, A. A. Yahya, H. S. Majdi, I. K. Salih, K. Yusoh, Q. F. Alsalhy, A. A. Abdul Razak, and A. Figoli, “Fabrication of gum arabic-graphene (Gga) modified polyphenylsulfone (ppsu) mixed matrix membranes: A systematic evaluation study for ultrafiltration (uf) applications,” Membranes (Basel), vol. 11, no. 7, 2021, doi: 10.3390/ membranes11070542.

[4]    A. A. A. Aljanabi, N. E. Mousa, M. M. Aljumaily, H. S. Majdi, A. A. Yahya, M. N. AL-Baiati, N. Hashim, K. T. Rashid, S. Al-Saadi, and Q. F. Alsalhy, “Modification of polyethersulfone ultrafiltration membrane using poly(terephthalic acid-co-glycerol-g-maleic anhydride) as novel pore former,” Polymers (Basel), vol. 14, no. 16, 2022, doi: 10.3390/polym14163408.

[5]    N. Ćelić, N. Banić, I. Jagodić, R. Yatskiv, J. Vaniš, G. Strbac, and S. Lukić-Petrović, “Eco-Friendly Photoactive Foils Based on ZnO/SnO2-PMMA Nanocomposites with High Reuse Potential,” ACS Applied Polymer Materials,    vol. 5, no. 5, pp. 3792–3800, 2023, doi: 10.1021/ acsapm.3c00396.

[6]    Y. Chen, Y. Jiang, B. Chen, F. Ye, H. Duan, and H. Cui, “Facile fabrication of N-doped carbon quantum dots modified SnO2 composites for improved visible light photocatalytic activity,” Vacuum, vol. 191, 2021, doi: 10.1016/j.vacuum. 2021.110371.

[7]    A. A. Najim and A. A. Mohammed, “Biosorption of Methylene Blue from Aqueous Solution Using Mixed Algae,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 19, no. 4, pp. 1–11, 2018, doi: 10.31699/ijcpe.2018.4.1.

[8]    O. I. Lipskikh, E. I. Korotkova, Y. P. Khristunova, J. Barek, and B. Kratochvil, “Sensors for voltammetric determination of food azo dyes - A critical review,” Electrochimica Acta, vol. 260, pp. 974–985, 2018. doi: 10.1016/j.electacta. 2017.12.027.

[9]    S. Yadav, K. S. Tiwari, C. Gupta, M. K. Tiwari, A. Khan, and S. P. Sonkar, “A brief review on natural dyes, pigments: Recent advances and future perspectives,” Results in Chemistry, vol. 5, 2023. doi: 10.1016/j.rechem.2022.100733.

[10]  M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, “Dye and its removal from aqueous solution by adsorption: A review,” Advances in Colloid and Interface Science, vol. 209, pp. 172–184, 2014, doi: 10.1016/j.cis.2014.04.002.

[11]  S. M. Al-Jubouri, H. A. Al-Jendeel, S. A. Rashid, and S. Al-Batty, “Green synthesis of porous carbon cross-linked Y zeolite nanocrystals material and its performance for adsorptive removal of a methyl violet dye from water,” Microporous and Mesoporous Materials, vol. 356, 2023, doi: 10.1016/j.micromeso.2023.112587.

[12]  A. Sadeghzadeh-Attar, “Binary Zn-doped SnO2/Al2O3 nanotube composites for visible-light-driven photocatalytic degradation of basic blue 41,” ACS Applied Nano Materials, vol. 3, no. 10, pp. 9931–9942, 2020, doi: 10.1021/ acsanm.0c01939.

[13]  S. H. Ahmed, E. A. A. Rasheed, L. A. A. Rasheed, and F. R. Abdulrahim, “Decolorization of cationic dye from aqueous solution by multiwalled carbon nanotubes,” Journal of Ecological Engineering, vol. 25, no. 2, pp. 72–84, 2024, doi: 10.12911/22998993/176210.

[14]  A. B. D. Nandiyanto, S. N. Hofifah, H. T. Inayah, I. F. Yani, S. R. Putri, S. S. Apriliani, S. Anggraeni, D. Usdiyana, and A. Rahmat, “Adsorption isotherm of carbon microparticles prepared from pumpkin (cucurbita maxima) seeds for dye removal,” Iraqi Journal of Science, vol. 62, no. 5, pp. 1404–1414, 2021, doi: 10.24996/ijs.2021.62.5.2.

[15]  A. Al-Hemiri, H. Al-Anbari, and I. K. Shakir, “Dye removal from wastewater using iron salts,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 9, no. 3, pp. 17–24, 2008.

[16]  N. A. Mohammed, A. I. Alwared, and M. S. Salman, “Photocatalytic degradation of reactive yellow dye in wastewater using H2O2/TiO2/UV technique,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 21, no. 1, pp. 15–21, 2020, doi: 10.31699/ijcpe.2020.1.3.

[17]  P. Kiattisaksiri, N. Petmark, and T. Ratpukdi, “Combination of coagulation and VUV+H2O2 for the treatment of color and organic matter in treated effluent wastewater from a sugar factory,” Applied Science and Engineering Progress, vol. 16, no. 4, 2023, Art. no. 6192, doi: 10.14416/j.asep.2022.08.002.

[18]  S. Samsami, M. Mohamadi, M. H. Sarrafzadeh, E. R. Rene, and M. Firoozbahr, “Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives,” Process Safety and Environmental Protection, vol. 143, pp. 138–163, 2020, doi: 10.1016/j.psep.2020.05.034.

[19]  H. N. Alfalahy and S. M. Al-Jubouri, “Preparation and application of polyethersulfone ultrafiltration membranincorporating NaX zeolite for lead ions removal from aqueous solutions,” Desalination Water Treat, vol. 248, pp. 149–162, 2022, doi: 10.5004/dwt.2022.28072.

[20]  R. Suresh, S. Rajendran, L. Gnanasekaran, P. L. Show, W. H. Chen, and M. Soto-Moscoso, “Modified poly(vinylidene fluoride) nanomembranes for dye removal from water – A review,” Chemosphere, vol. 322, 2023, doi: 10.1016/ j.chemosphere.2023.138152.

[21]  V. Vatanpour, S. S. . Khadem, A. Dehqan, M. A. Al‐Naqshabandi, M. R. Ganjali, S. S. Hassani, M. R. Rashid, M. R. Saeb, and N. Dizge, “Efficient removal of dyes and proteins by nitrogen-doped porous graphene blended polyethersulfone nanocomposite membranes,” Chemosphere, vol. 263, 2021, doi: 10.1016/ j.chemosphere.2020.127892.

[22]  Y. Ibrahim, V. Naddeo, F. Banat, and S. W. Hasan, “Preparation of novel polyvinylidene fluoride (PVDF)-Tin(IV) oxide (SnO2) ion exchange mixed matrix membranes for the removal of heavy metals from aqueous solutions,” Separation and Purification Technology, vol. 250, 2020, doi: 10.1016/j.seppur.2020.117250.

[23]  N. H. M. Safari, S. Rozali, A. R. Hassan, and R. Osman, “Inducing the skinned-oriented asymmetrical nanofiltration membranes via controlled evaporation times in dry wet phase inversion process,” Applied Science and Engineering Progress, vol. 16, no. 2, 2023, Art. no. 6015, doi: 10.14416/j.asep.2022.05.007.

[24]  R. J. Kadhim, F. H. Al-Ani, M. Al-Shaeli, Q. F. Alsalhy, and A. Figoli, “Removal of dyes using graphene oxide (Go) mixed matrix membranes,” Membranes (Basel), vol. 10, no. 12, pp. 1–24, 2020, doi: 10.3390/membranes10120366.

[25]  S. M. Al-Jubouri, S. Al-Batty, R. K. S. Al-Hamd, R. Sims, M. W. Hakami, and S. K. Manirul Haque, “Sustainable environment through using porous materials: A review on wastewater treatment,” Asia-Pacific Journal of Chemical Engineering, 2023. doi: 10.1002/apj.2941.

[26]  R. M. Al-Maliki, Q. F.  Alsalh, S.  Al-Jubouri, A. A.  AbdulRazak, M. A. Shehab, Z. Németh, K. Hernadi, and H S. Majdi, “Enhanced Antifouling in Flat-Sheet Polyphenylsulfone Membranes Incorporating Graphene Oxide–Tungsten oxide for ultrafiltration applications,” Membranes (Basel), vol. 13, no. 3, 2023, doi: 10.3390/ membranes13030269.

[27]  S. M. Hosseini, F. Karami, S. K. Farahani, S. Bandehali, J.  Shen, E. Bagheripour, and A. Seidypoor “Tailoring the separation performance and antifouling property of polyethersulfone based NF membrane by incorporating hydrophilic CuO nanoparticles,” Korean Journal of Chemical Engineering, vol. 37, no. 5, pp. 866–874, 2020, doi: 10.1007/s11814-020-0497-2.

[28]  M. R. Esfahani, S. A. Aktij, Z. Dabaghian, M. D. Firouzjaei, A. Rahimpour, J. Eke, I. C. Escobar, M. Abolhassani, L. F. Greenlee, A. R. Esfahani, A. Sadmani, and N. Koutahzadeh, “Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications,” Separation and Purification Technology, vol. 213, pp. 465–499, 2019. doi: 10.1016/j.seppur.2018.12.050.

[29]  A. Nasir, F. Masood, T. Yasin, and A. Hameed, “Progress in polymeric nanocomposite membranes for wastewater treatment: Preparation, properties and applications,” Journal of Industrial and Engineering Chemistry, vol. 79, pp. 29–40, 2019, doi: 10.1016/j.jiec.2019.06.052.

[30]  N. Mustafa and H. Al -Nakib, “Reverse Osmosis Polyamide Membrane for the Removal of Blue and Yellow Dye from Waste Water,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 14, no. 2, pp. 49–55, 2013.

[31]  L. Liu, X. Chen, S. Feng, Y. Wan, and J. Luo, “Enhancing the antifouling ability of a polyamide nanofiltration membrane by narrowing the pore size distribution via one-step multiple interfacial polymerization,” ACS Applied Materials & Interfaces, vol. 14, no. 31, pp. 36132–36142, 2022, doi: 10.1021/acsami.2c09408.

[32]  S. Hadi, A. A. Mohammed, S. M. Al-Jubouri, M. F. Abd, H. S. Majdi, Q. F. Alsalhy, K. T. Rashid, S. S. Ibrahim, I. K. Salih, and A. Figoli, “Experimental and theoretical analysis of lead Pb2+ and Cd2+ retention from a single salt using a hollow fiber PES membrane,” Membranes (Basel), vol. 10, no. 7, pp. 1–25, 2020, doi: 10.3390/membranes10070136.

[33]  G. Gnanasekaran, M.S.P. Sudhakaran, D. Kulmatova, J. Han, G. Arthanareeswaran, E. Jwa, and Y. S. Mok, “Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane,” Chemosphere, vol. 284, 2021, doi: 10.1016/j.chemosphere.2021. 131244.

[34]  R. M. Al-Maliki, Q. F.  Alsalh, S.  Al-Jubouri, I. K. Salih, A. A.  AbdulRazak, M. A. Shehab, Z. Németh, and K. Hernadi, “Classification of nanomaterials and the effect of Graphene Oxide (GO) and recently developed nanoparticles on the ultrafiltration membrane and their applications: A review,” Membranes, vol. 12, 2022, Art. no. 1043, doi: 10.13140/RG.2.2.14364.16001.

[35]  Z. Chen, G. Chen, H. Xie, Z. Xu, Y. Li, J.  Wan, L. Liu, and H. Mao, “Photocatalytic antifouling properties of novel PVDF membranes improved by incorporation of SnO2-GO nanocomposite for water treatment,” Separation and Purification Technology, vol. 259, 2021, doi: 10.1016/ j.seppur.2020.118184.

[36]  A. G. Saleem and S. M. Al-Jubouri, “Separation performance of cationic and anionic dyes from water using polyvinylidene fluoride-based ultrafiltration membrane incorporating polyethylene glycol,” Desalination Water Treat, 2024, Art. no. 100546, doi: 10.1016/j.dwt.2024. 100546.

[37]  K. Umam, F. Sagita, E. Pramono, M. Ledyastuti, G. T. M. Kadja, and C. L. Radiman, “Polyvinylidenefluoride (PVDF)/ surface functionalized- mordenite mixed matrix membrane for congo red dyes removal: Effect of types of organosilane,” JCIS Open, vol. 11, 2023, doi: 10.1016/j.jciso.2023.100093.

[38]  M. C. Nayak, A. M. Isloor, Inamuddin, B. Prabhu, N. I. Norafiqah, and A. M. Asiri, “Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: Fabrication, characterization and toxic dyes removal from aqueous solutions,” Reactive and Functional Polymers, vol. 139, pp. 170–180, 2019, doi: 10.1016/j.reactfunctpolym. 2019.02.015.

[39]  S. Liu, X. Fang, M. Lou, Y. Qi, R. Li, G. Chen, Y. Li, Y. Liu, and F. Li, “Construction of loose positively charged nf membrane by layer-by-layer grafting of polyphenol and polyethyleneimine on the pes/fe substrate for dye/salt separation,” Membranes (Basel), vol. 11, no. 9, 2021, doi: 10.3390/membranes11090699.

[40]  M. Abdullah and S. Al-Jubouri, “Implementation of hierarchically porous zeolite-polymer membrane for Chromium ions removal,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/779/1/012099.

[41]  A. Fadaei, A. Salimi, and M. Mirzataheri, “Structural elucidation of morphology and performance of the PVDF/PEG membrane,” Journal of Polymer Research, vol. 21, no. 9, 2014, doi: 10.1007/s10965-014-0545-x.

[42]  M. K. Selatile, S. S. Ray, V. Ojijo, and R. Sadiku, “Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination,” RSC Advances, vol. 8, no. 66. Royal Society of Chemistry, pp. 37915–37938, 2018. doi: 10.1039/C8RA07489E.

[43]  S. M. Abbas and S. M. Al-Jubouri, “High performance and antifouling zeolite@ polyethersulfone/cellulose acetate asymmetric membrane for efficient separation of oily wastewater,” Journal of Environmental Chemical Engineering, vol. 12, no. 3, 2024, doi: 10.1016/j.jece.2024.112775.

[44]  S. J. Jie, O. B. Seng, L. L. H. Ting, and S. J. Yao, “Development of antifouling poly(vinylidene fluoride) ultrafiltration membrane with the addition of polyethylene glycol as additive,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, 2020, doi: 10.1088/1755-1315/463/1/012178.

[45]  J. Zhu, S. Zhou, M. Li, A. Xue, Y. Zhao, W. Peng, and W. Xing, “PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties,” Journal of Membrane Science, vol. 612, 2020, doi: 10.1016/j.memsci. 2020.118467.

[46]  M. Sri Abirami Saraswathi, R. Kausalya, N. J. Kaleekkal, D. Rana, and A. Nagendran, “BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes,” Journal of Environmental Chemical Engineering, vol. 5, no. 3, pp. 2937–2943, 2017, doi: 10.1016/j.jece.2017.05.051.

[47]  N. Nikooe and E. Saljoughi, “Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution,” Applied Surface Science, vol. 413, pp. 41–49, 2017, doi: 10.1016/j.apsusc.2017.04.029.

[48]  A. E. Abdelhamid, A. E. Elsayed, M. Naguib, and E. A. Ali, “Effective dye removal by acrylic-based membrane constructed from textile fibers waste,” Fibers and Polymers, 2023, doi: 10.1007/s12221-023-00247-z.

Full Text: PDF

DOI: 10.14416/j.asep.2024.08.001

Refbacks

  • There are currently no refbacks.