Investigation of the Thermal and Mechanical Properties of Glass Fiber Reinforced ABS/Epoxy Blended Polymer Composite
Abstract
Keywords
[1] O. Demircan, A. Al-darkazali, İ. İnanç, and V. Eskizeybek, “Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites,” Journal of Thermoplastic Composite Materials, vol. 33, no. 12, pp. 1652–1673, 2020, doi: 10.1177/0892705719833105.
[2] A. K. Sinha, H. K. Narang, and S. Bhattacharya, “Mechanical properties of natural fiber polymer composites,” Journal of Polymer Engineering, vol. 37, no. 9, pp. 879–895, 2017, doi: 10.1515/ polyeng-2016-0362.
[3] Diaz, L. J. Leslie, S. M. Hagad, and P. J. M. Santiago, “Minimizing property variation in natural fiber reinforcements for green composite materials applications,” Materials Science Forum, vol. 894, pp. 50–55, 2017, doi: 10.4028/www. scientific.net/MSF.894.50.
[4] R. Biswas, N. Sharma, and K. K. Singh, “Numerical analysis of mechanical and fatigue behaviour of glass and carbon fiber reinforced polymer composite,” Materials Today: Proceedings, 2023, doi: 10.1016/j.matpr.2023.03.479.
[5] I. Suyambulingam, S. M. Rangappa, and S. Siengchin, “Advanced materials and technologies for engineering applications,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6760, doi: 10.14416/j.asep.2023.01.008.
[6] S. K. Palaniappan, M. K. Singh, S. M. Rangappa, and S. Siengchin, “Eco-friendly biocomposites: A step towards achieving sustainable development goals,” Applied Science and Engineering Progress, vol. 17, no. 4, Art. no. 7373, 2024, doi: 10.14416/ j.asep.2024.02.003.
[7] B. Ma'ruf, A. Ismail, D. P. Sari, and S. H. Sujiatanti, “Strength analysis of marine biaxial warp-knitted glass fabrics as composite laminations for ship material,” Curved and Layered Structures, vol. 10, 2023, doi: 10.1515/ cls-2022-0209.
[8] S. B. Koppula, S. Karachi, V. Kumar, N. D. Borra, Y. Phaneendra, V. S. Neigapula, and S. Hemalatha, “Investigation into the mechanical characteristics of natural fiber-reinforced polymer composites: Effects of flax and e-glass reinforcement and stacking configuration,” Materials Today: Proceedings, 2023, doi: 10.1016/j.matpr.2023.07.020.
[9] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific advancements in composite materials for aircraft applications: A review,” Polymers, vol. 14, no. 22, 2022, doi: 10.3390/polym14225007.
[10] M. Ramesh, K. Palanikumar, and K. H. Reddy, “Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites,” Composites Part B: Engineering, vol. 48, pp. 1–9, 2013, doi: 10.1016/j.compositesb.2012.12.004.
[11] G. B. V. Kumar, R. Mageshvar, R. Rejath, S. Karthik, R. Pramod, and C. S. P. Rao, “Characterization of glass fiber bituminous coal tar reinforced polymer matrix composites for high performance applications,” Composites Part B: Engineering, vol. 175, 2019, Art. no. 107156, doi: 10.1016/j.compositesb.2019.107156.
[12] S. Klara, F. Mahmuddin, and M. Muas, “Analysis of loading change effect to boat velocity on a 2.5 GT fishing FRP boat with a field test,” SPECTA Journal of Technology, vol. 2, no. 1, pp. 5–10, 2018, doi: 10.35718/specta.v2i1.89.
[13] I. Yusuf, A. Yani, and M. S. Baba, “Approaches method to solve ships routing problem with an application to the Indonesian national shipping company,” in Proceedings of the 2011 International Conference on Applied, Numerical and Computational Mathematics, pp. 57–62, 2011, doi: 10.5555/2047950.2047959.
[14] S. Jayaram, K. Sivaprasad, and C. G. Nandakumar, “Recycling of FRP Boats,” International Journal of Advanced Research in Engineering and Technology, vol. 9, no. 3, pp. 244–252, 2018.
[15] N. Kumar, S. Kumar, J. S. Grewal, V. Mehta, and S. Ali, “Comparative study of Abaca fiber and Kevlar fibers based brake friction composites,” Polymer Composites, vol. 43, no. 2, pp. 730–740, 2022, doi: 10.1002/pc.26405.
[16] T. Fulga and M. Zanoaga, “Fiber reinforced polymer composites as structuaral materials for aeronauctics,” in International Conference of Scientific Paper AFASES, pp. 1–10, 2013.
[17] P. D. Mangalgiri, “Composite materials for aerospace applications,” Bulletin of Materials Science, vol. 22, pp. 657–664, 1999, doi: 10.1007/ BF02749982.
[18] R. Pramod and S. Kumar, “Evaluation of mechanical and insulation properties of nomex-t410 and H.S. glass polymer matrix composites,” Materials Today: Proceedings, vol. 4, no. 2, pp. 3233–3242, 2017, doi: 10.1016/j.matpr.2017.02.209.
[19] O. Demircan, C. Yilmaz, E. S. Kocaman, and M. Yildiz, “An experimental study on tensile and bending properties of biaxial warp knitted textile composites,” Advanced Composite Materials, vol. 29, pp. 73–88, 2020, doi: 10.1080/09243046. 2019.1639016.
[20] R. Pramod, S. Basavarajappa, G. B. V. Kumar, and M. Chavali, “Drilling induced delamination assessment of nanoparticles reinforced polymer matrix composites,” Journal of Mechanical Engineering Science, vol. 236, pp. 2931–2948, 2022, doi: 10.1177/09544062211030967.
[21] K. K. Singh, M. T. Ansari, and M. S. Azam, “Fatigue life and damage evolution in woven GFRP angle ply laminates,” International Journal of Fatigue, vol. 142, 2021, Art. no. 105964, doi: 10.1016/j.ijfatigue.2020.105964.
[22] S. A. Khan, S. S. R. Koloor, K. J. Wong, T. Dickhut, and M. N. Tamin, “An interlaminar fatigue damage model based on property degradation of carbon fiber-reinforced polymer composites,” Engineering Fracture Mechanics, vol. 302, 2024, Art. no. 110066, doi: 10.1016/ j.engfracmech.2024.110066.
[23] O. Y. Burak, L. Parnas, and D. Coker, “Interlaminar tensile strength of different angle-ply CFRP composites,” Procedia Structural Integrity, vol. 21, pp. 198–205, 2019, doi: 10.1016/j.prostr. 2019.12.102.
[24] K. A. Eldressi, H. M Alojaly, W. O. A. Salem, and Naser S. Sanoussi, “Review of recent developments in polymer matrix composites with particulate reinforcements,” Comprehensive Materials Processing, pp. 409–413, 2024, doi: 10.1016/B978-0-323-96020-5.00067-4.
[25] G. Chen, A. Li, H. Liu, S. Huang, Z. Zhang, W. Liu, C. Zha, B. Li, and Z. Wang, “Mechanical and dynamic properties of resin blend and composite systems: A molecular dynamics study,” Composite Structures, vol. 190, pp. 160–168, 2018, doi: 10.1016/j.compstruct.2018.02.001.
[26] Y. Lyu and H. Ishida, “Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications,” Progress in Polymer Science, vol. 99, 2019, Art. no. 101168, doi: 10.1016/j.progpolymsci.2019.101168.
[27] F. C. Fernandes, K. Kirwan, D. Lehane, and S. R. Coles, “Epoxy resin blends and composites from waste vegetable oil,” European Polymer Journal, vol. 89, pp. 449–460, 2017, doi: 10.1016/j.eurpolymj.2017.02.005.
[28] M. M. Raj, L. M. Raj, and P. N. Dave, “Glass fiber reinforced composites of phenolic–urea–epoxy resin blends,” Journal of Saudi Chemical Society, vol. 16, no. 3, 2012, doi: 10.1016/ j.jscs.2011.01.007.
[29] A. Toldy, Á. Szlancsik and B. Szolnoki, “Reactive flame retardancy of cyanate ester/epoxy resin blends and their carbon fibre reinforced composites,” Polymer Degradation and Stability, vol. 128, pp. 29–38, 2016, doi: 10.1016/j.polymdegradstab.2016.02.015.
[30] A. A. Athawale and J. A. Pandit, “Chapter 1 - Unsaturated polyester resins, blends, interpenetrating polymer networks, composites, and nanocomposites: State of the art and new challenges,” in Unsaturated Polyester Resins. Amsterdam, Netherlands: Elsevier, pp. 1–42, 2019, doi: 10.1016/B978-0-12-816129-6.00001-6.
[31] H. N. Dhakal and S. O. Ismail, “Chapter 8 - Unsaturated polyester resins: Blends, interpenetrating polymer networks, composites, and nanocomposites,” in Unsaturated Polyester Resins. Amsterdam, Netherlands: Elsevier, 2019, pp. 181–198, 2019, doi: 10.1016/B978-0-12-816129-6.00008-9.
[32] B. K. Kandola, L. Krishnan, and J. R. Ebdon, “Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites: Effects of added flame retardants,” Polymer Degradation and Stability, vol. 106, pp. 129–137, 2014, doi: 10.1016/j.polymdegradstab.2013.12.021.
[33] C. Liu, H. Yuhong, M. Sun, X. Zhang, B. Zhang, and X. Bai, “Influence of epoxy resin species on the curing behavior and adhesive properties of cyanate Ester/Poly(aryl ether nitrile) blends,” Polymer, vol. 288, 2023, Art. no. 126450, doi: 10.1016/j.polymer.2023.126450.
[34] X. Guo, K. Wei, N. Tengfei, W. Shi, C. Dai, Z. Zhao, and G. Zhanpeng, “Preparation and performance analysis of polyethylene glycol/ epoxy resin composite phase change material,” Journal of Energy Storage, vol. 88, 2024, Art. no. 111525, doi: 10.1016/j.est.2024.111525.
[35] G. B. V. Kumar, R. Mageshvar, R. Rejath, S. Karthik, R. Pramod, and C. S. P. Rao, “Characterization of glass fiber bituminous coal tar reinforced Polymer Matrix Composites for high performance applications Composites Part B: Engineering, vol. 175, 2019, Art. no. 107156, doi: 10.1016/j.compositesb.2019.107156.
[36] J. J. Lu, Y. C. Shi, J. P. Guan, R. Q. Dang, L. C. Yu, H. Q. Wang, N. D. Hu, and X. J. Shen, “Enhanced mechanical properties of ramie fabric/epoxy composite laminates by silicon polymer,” Industrial Crops and Products, vol. 199, 2023, Art. no. 116778, doi: 10.1016/ j.indcrop.2023.116778.
[37] M. S. Sarfraz, H. Hong, and S. S. Kim, “Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study,” Composite Structures, vol. 266, 2021, Art. no. 113864, doi: 10.1016/j.compstruct. 2021.113864.
[38] G. Chollon, O. Siron, J. Takahashi, H. Yamauchi, K. Maeda, and K. Kosaka, “Microstructure and mechanical properties of coal tar pitch-based 2D-C/C composites with a filler addition,” Carbon, vol. 39, pp. 2065–2075, 2001, doi: 10.1016/ S0008-6223(01)00021-5.
[39] S. Sembiring, A. Riyanto, R. Situmeang, and Z. Sembiring, “Bituminous composite comprising amorphous Silica from rice husks,” Ceram – Silikaty, vol. 63, pp. 277–286, 2019, doi: 10.13168/cs.2019.0021.
[40] V. Mahesh, S. Joladarashi, and S. M. Kulkarni, “A comprehensive review on material selection for polymer matrix composites subjected to impact load,” Defence Technology, vol. 17, no. 1, pp. 257–277, 2021, doi: 10.1016/j.dt.2020.04.002.
[41] R. Laghaei, S. M. Hejazi, H. Fashandi, S. Akbarzadeh, S. Shaghaghi, and A. S. Kashani, “Improvement in fracture toughness and impact resistance of E-glass/epoxy composites using layers composed of hollow poly(ethylene terephthalate) fibers,” Journal of Industrial Textiles, vol. 51, no. 3, 2022, doi: 10.1177/15280837211044910.
[42] T. P. Mohan and K. Kanny, “Dynamic mechanical analysis of glass fiber reinforced Epoxy filled nanoclay hybrid composites,” Materials Today: Proceedings, vol. 87, no. 1, pp. 235–245, 2023, doi: 10.1016/j.matpr.2023.05.282.
[43] K. Arunprasath, M. Vijayakumar, M. Ramarao, T. G. Arul, S. P. Pauldoss, M. Selwin, B. Radhakrishnan, and V. Manikandan, “Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS),” Materials Today: Proceedings, vol. 50, no. 5, pp. 1559–1562, 2022, doi: 10.1016/j.matpr.2021.09.113.
[44] Z. Weng, J. Wang, T. Senthil, and L. Wu, “Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing,” Materials & Design, vol. 102, pp. 276–283, 2016, doi: 10.1016/j.matdes.2016.04.045.
[45] Mishra, Kunal, L. K. Babu, D. Dhakal, P. Lamichhane, and R. K. Vaidyanathan, “The effect of solvent on the mechanical properties of polyhedral oligomeric silsesquioxane (POSS)–epoxy nanocomposites,” SN Applied Sciences, vol. 1, pp. 1–7, 2019, Art. no. 898, doi: 10.1007/ s42452-019-0918-1.
[46] K. Arunprasath, M. Vijayakumar, M. Ramarao, T.G. Arul, S. P. Pauldoss, M. Selwin, B. Radhakrishnan, and V. Manikandan, “Dynamic mechanical analysis performance of pure 3D printed polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS),” Materials Today: Proceedings, vol. 50, no. 5, pp. 1559–1562, 2022, doi: 10.1016/j.matpr.2021.09.113.
[47] J. Feng and Z. Guo, “Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites,” Composites Part B: Engineering, vol. 85, pp. 161–169, 2016, doi: 10.1016/j.compositesb.2015.09.040.
[48] C. Li, R. Zhang, G. Wang, and Y. Shi, “The mechanical properties of epoxy resin composites modified by compound modification,” AIP Advances, vol. 8, no. 10, 2018, Art. no. 105325, doi: 10.1063/ 1.5047083.
[49] J. Tang, H. Zhou, Y. Liang, X. Shi, X. Yang, and J. Zhang, “Properties of graphene oxide/epoxy resin composites,” Journal of Nanomaterials, vol. 2014, 2014, Art. no. 696859, doi: 10.1155/ 2014/696859.
[50] T. V. Brantseva, Y. A. Gorbatkina, V. Dutschk, K. Schneider, and R. Häßler, “Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fibre composites. III. Properties of the cured blends and their structures in the polymer/fibre interphase,” Journal of Adhesion Science and Technology, vol. 18, pp. 1309–1323, 2004, doi: 10.1163/1568561041588183.
[51] L. Tao and Zey, “Improving the toughness of thermosetting epoxy resins via blending triblock copolymers,” RSC Advances, vol. 10, pp. 1603–1612, 2020, doi: 10.1039/c9ra09183a.
[52] J. N. Martins, T. G. Klohn, O. Bianchi, R. Fiorio, and E. Freire, “Dynamic mechanical, thermal, and morphological study of ABS/textile fiber composites,” Polymer bulletin, vol. 64, pp. 497–510, 2010, doi: 10.1007/s00289-009-0200-6.
[53] X. F. Liu, X. Luo, B. W. Liu, H. Y. Zhong, D. M. Guo, R. Yang, L. Chen, and Y. Z. Wang, “Toughening epoxy resin using a liquid crystalline elastomer for versatile application,” ACS Applied Polymer Materials, vol. 1, no. 9, pp. 2291–2301, 2019, doi: 10.1021/acsapm. 9b00319.
[54] G. Youssef, S. Newacheck, N. U. Huynh and C. Gamez, “Multiscale characterization of e-glass/epoxy composite exposed to extreme environmental conditions,” Journal of Composites Science, vol. 5, no. 3, 2021, doi: 10.3390/jcs 5030080.
[55] N. Gökçe, S. Eren, M. Nodehi, D. Ramazanoğlu, S. Subaşi, O. Gencel, and T. Ozbakkaloglu, “Engineering properties of hybrid polymer composites produced with different unsaturated polyesters and hybrid Epoxy,” Journal of Building Engineering, vol. 89, 2024, Art no. 109334, doi: 10.1016/j.jobe.2024.109334.
[56] Sun, Zeyu, L. Xu, Z. Chen, Y. Wang, R. Tusiime, C. Cheng, S. Zhou, Y. Liu, M. Yu, and H. Zhang, “Enhancing the mechanical and thermal properties of epoxy resin via blending with Thermoplastic Polysulfone,” Polymers, vol. 11, no. 3, 2019, doi: 10.3390/polym11030461.
[57] H. Xu, X. Zhang, Y. Yating, Y. Yang, and L. Weng, “Enhanced adhesion property of epoxy resin composites through dual reinforcement mechanisms,” Next Materials, vol. 3, 2024, Art. no. 100072, doi: 10.1016/j.nxmate.2023.100072.
[58] K. Devendra and T. Rangaswamy, “Strength characterization of e-glass fiber reinforced epoxy composites with filler materials,” Journal of Minerals and Materials Characterization and Engineering, vol. 1, no. 6, pp. 353–357, 2013, doi: 10.4236/jmmce.2013.16054.
[59] Y. Zeng, Y. Xue, X. Gong, X. Gao, E. Jiaqiang, J. Chen, and E. Leng, “Pyrolytic performance and kinetics study of epoxy resin in carbon fiber reinforced composites: Synergistic effects of epoxy resin and carbon fiber,” Journal of Analytical and Applied Pyrolysis, vol. 176, 2023, Art. no. 106255, doi: 10.1016/j.jaap.2023.106255.
[60] Z. Tuo, K. Chen, Q. Zhou, Y. Wang, Q. Wang, Y. Zhang, Z. Lin, and Y. Liang, “High-performance shape memory epoxy resin with high strength and toughness: Prepared by introducing hydrogen bonds through polycaprolactone and low melting point alloy,” Composites Science and Technology, vol. 250, 2024, Art. no. 110510, doi: 10.1016/j.compscitech. 2024.110510.
[61] M. Gopalakrishnan, S. Muthu, R. Subramanian, R. Santhanakrishnan, and L. M. Karthigeyan, “Tensile properties study of E-glass/epoxy laminate and π/4 quasi-isotropic E-glass/epoxy laminate,” Polymers and Polymer Composites, vol. 24, pp. 429–446, 2016, doi: 10.1177 /096739111602400606.
[62] D. Hwang and D. Cho, “Fiber aspect ratio effect on mechanical and thermal properties of carbon fiber/ABS composites via extrusion and long fiber thermoplastic processes,” Journal of Industrial and Engineering Chemistry, vol. 80, pp. 335–344, 2019, doi: 10.1016/j.jiec.2019. 08.012.
[63] M. M. Singh, H. Kumar, G. H. Kumar, P. Sivaiah, K. V. Nagesha, K. M. Ajay, and G. Vijaya "Determination of strength parameters of glass fibers reinforced composites for engineering applications,” Silicon, vol. 12, pp. 1–11, 2020, doi: 10.1007/s12633-019-0078-3.
[64] Y. Qi, Q. Fan, J. Li, Q. Cao, X. Pan, Y. Pan, X. Jian, and Z. Weng, “Toughened and reinforced the petroleum-based epoxy resin via thermotropic liquid crystal bio-based counterpart,” Composites Communications, vol. 44, 2023, Art. no. 101771, doi: 10.1016/j.coco.2023.101771.
[65] C. B. Luna, E. B. Ferreira, D. D. Siqueira, E. A. Filho, and E. M. Araújo, “Additivation of the ethylene–vinyl acetate copolymer (EVA) with maleic anhydride (M.A.) and dicumyl peroxide (DCP): the impact of styrene monomer on crosslinking and functionalization,” Polymer Bulletin, vol. 79, pp. 7323–7346, 2021, doi: 10.1007/s00289-021-03856-x.
DOI: 10.14416/j.asep.2024.08.003
Refbacks
- There are currently no refbacks.