Page Header

Biochar Microparticles from Pomegranate Peel Waste: Literature Review and Experiments in Isotherm Adsorption of Ammonia

Asep Bayu Dani Nandiyanto, Adisti Eka Putri, Meli Fiandini, Risti Ragadhita, Teguh Kurniawan

Abstract


This research aimed to synthesize biochar microparticles from pomegranate peel waste for ammonia adsorption. This research also focused on analyzing adsorption isotherm and kinetics models to understand the mechanism of ammonia adsorption on the biochar. The experiments were conducted by carbonizing pomegranate peel waste. The carbonized material was then milled and sieved to obtain biochar microparticles with a certain size (i.e. 500, 1000, and 2000 μm). The particles were then characterized using microscopy and infrared spectroscopy (FTIR) to identify particle morphology and functional groups. The prepared particles were then used for the ammonium adsorption process, and compared with ten isotherm models (such as Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Jovanovic, Halsey, Harkin-Jura, Flory-Huggins, Fowler-Guggenheim, and Hill-Deboer) to identify the adsorption mechanism. Adsorption kinetic analysis was also performed to identify the adsorption rate of the prepared particles using first-order and second-order pseudo-kinetic models. The adsorption isotherm model informed that ammonia adsorption on biochar with sizes of 2000 μm (large) and 1000 μm (medium) occurs in a multilayer process with physical interaction accompanied by pore filling. Meanwhile, small biochar (500 μm) indicates that the ammonia adsorption process occurs on homogeneous sites with physical interaction through pore filling. From the results of fitting the isotherm model, information about the maximum adsorption capacity for each size of 2000, 1000, and 500 μm are 65.631, 62.231, and 50.086 mg/g, respectively. Overall, the adsorption mechanism occurring on biochar involves interactions among ammonia molecules that repel each other under endothermic conditions. The largest adsorption capacity was obtained for biochar with sizes of 2000 μm. Analysis of adsorption kinetics showed that the adsorption process follows a first-order pseudo-kinetic model, indicating an adsorption mechanism controlled by intraparticle diffusion. This study concludes that biochar from pomegranate peel is prospective for use as an environmentally friendly adsorbent for ammonia removal applications from wastewater, offering a sustainable and effective alternative adsorbent to existing water treatment technologies and solving current issues in the sustainable development goals (SDGs).

Keywords



[1]    T. Ambaye, M. Vaccari, E. D. van Hullebusch, A. Amrane, and S. Rtimi, “Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater,” International Journal of Environmental Science and Technology, vol. 18, no. 10, pp. 3273–3294, 2021, doi: 10.1007/ s13762-020-03060-w.

[2]    A. El-Naggar, S. X. Chang, Y. Cai, Y. H. Lee, J. Wang, S.-L. Wang, C. Ryu, J. Rinklebe, and Y. S. Ok, “Mechanistic insights into the (im) mobilization of arsenic, cadmium, lead, and zinc in a multi-contaminated soil treated with different biochars,” Environment International, vol. 156, no. 10, 2021, Art. no. 106638, doi: 10.1016/ j.envint.2021.106638.

[3]    F. Jing, C. Chen, X. Chen, W. Liu, X. Wen, S. Hu, Z. Yang, B. Guo, Y. Xu, and Q. Yu, “Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice,” Environmental Pollution, vol. 257,        no. 10, 2020, Art. no. 113592, doi: 10.1016/ j.envpol.2019.113592.

[4]    B. Liu, T. Chen, B. Wang, S. Zhou, Z. Zhang, Y. Li, X. Pan, and N. Wang, “Enhanced removal of Cd2+ from water by AHP-pretreated biochar: Adsorption performance and mechanism,” Journal of Hazardous Materials, vol. 438, no. 10, 2022, Art. no. 129467, doi: 10.1016/j.jhazmat. 2022.129467.

[5]    K. R. Parmar and A. B. Ross, “Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate,” Energies, vol. 12, no. 9, 2019, Art. no. 1586, doi: 10.3390/en12091586.

[6]    M. K. Hossain, V. Strezov, K. Y. Chan, A. Ziolkowski, and P. F. Nelson, “Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar,” Journal of Environmental Management, vol. 92, no. 1, pp. 223–228, 2011, doi: 10.1016/j.jenvman. 2010.09.008.

[7]    T.-B. Nguyen, Q.-M. Truong, C.-W. Chen, W.-H. Chen, and C.-D. Dong, “Pyrolysis of marine algae for biochar production for adsorption of Ciprofloxacin from aqueous solutions,” Bioresource Technology, vol. 351, 2022, Art. no. 127043, doi: 10.1016/j.biortech.2022.127043.

[8]    M. Sbizzaro, S. C. Sampaio, R. R. dos Reis, F. de Assis Beraldi, D. M. Rosa, C. M. B. de Freitas Maia, C. T. do Nascimento, E. A. da Silva, and C. E. Borba, “Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems,” Journal of Molecular Liquids, vol. 343, 2021, Art. no. 117667, doi: 10.1016/j.molliq.2021. 117667.

[9]    G. Qi, Z. Pan, X. Zhang, S. Chang, H. Wang, M. Wang, W. Xiang, and B. Gao, “Microwave biochar produced with activated carbon catalyst: Characterization and adsorption of heavy metals,” Environmental Research, vol. 216, 2023, Art. no. 114732, doi: 10.1016/j.envres.2022.114732.

[10] W. Ahmed, S. Mehmood, A. Núñez-Delgado, S. Ali, M. Qaswar, A. Shakoor, M. Mahmood, and D.-Y. Chen, “Enhanced adsorption of aqueous Pb (II) by modified biochar produced through pyrolysis of watermelon seeds,” Science of The Total Environment, vol. 784, 2021, Art. no. 147136, doi: 10.1016/j.scitotenv.2021.147136.

[11] W. Lian, L. Yang, S. Joseph, W. Shi, R. Bian, J. Zheng, L. Li, S. Shan, and G. Pan, “Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II),” Bioresource Technology, vol. 317, 2020, Art. no. 124011, doi: 10.1016/j.biortech.2020.124011.

[12] M. Salimi, Z. Salehi, H. Heidari, and F. Vahabzadeh, “Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-Nitrophenol,” Journal of Environmental Chemical Engineering, vol. 9, no. 4, 2021, Art. no. 105403, doi: 10.1016/j.jece. 2021.105403.

[13] Q. Jin, Z. Wang, Y. Feng, Y.-T. Kim, A. C. Stewart, S. F. O'Keefe, A. P. Neilson, Z. He, and H. Huang, “Grape pomace and its secondary waste management: Biochar production for a broad range of lead (Pb) removal from water,” Environmental Research, vol. 186, 2020, Art. no. 109442, doi: 10.1016/j.envres.2020.109442.

[14] P. A. da Silva Veiga, J. Schultz, T. T. da Silva Matos, M. R. Fornari, T. G. Costa, L. Meurer, and A. S. Mangrich, “Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment,” Journal of Analytical and Applied Pyrolysis, vol. 148, 2020, Art. no. 104823, doi: 10.1016/j.jaap.2020.104823.

[15] D. F. Al Husaeni, and A. B. D. Nandiyanto, “Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic,” ASEAN Journal of Science and Engineering, vol. 2, no. 1, pp. 19–46, 2022.

[16] A. B. D. Nandiyanto, M. Fiandini, D. A. Fadiah, P. A. Muktakin, R. Ragadhita, W. C. Nugraha, T. Kurniawan, M. R. Bilad, J. Yunas, and A. S. M. Al Obaidi, “Sustainable biochar carbon microparticles based on mangosteen peel as biosorbent for dye removal: Theoretical review, modelling, and adsorption isotherm characteristics,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 105, no. 1, pp. 41–58, 2023, doi: 10.37934/arfmts.105.1.4158.

[17] A. B. D. Nandiyanto, W. C. Nugraha, I. Yustia, R. Ragadhita, M. Fiandini, M. Saleh, and D. R. Ningwulan, “Rice husk for adsorbing dyes in wastewater: literature review of agricultural waste adsorbent, preparation of Rice husk particles, particle size on adsorption characteristics with mechanism and adsorption isotherm,” Journal of Advanced Research in Applied Mechanics, vol. 106, no. 1, pp. 1–13, 2023, doi: 10.37934/aram.106.1.113.

[18] A. B. D. Nandiyanto, M. Fiandini, R. Ragadhita, H. Maulani, M. Nurbaiti, A. S. M. Al-Obaidi, J. Yunas, and M. R. Bilad, “Sustainable biochar carbon biosorbent based on tamarind (Tamarindusindica L) seed: Literature review, preparation, and adsorption isotherm,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 32, no. 1, pp. 210–226, 2023, doi: 10.37934/araset.32.1.210226.

[19] A. B. D. Nandiyanto, M. Fiandini, R. Ragadhita, R. Maryanti, D. Al Husaeni, and D. Al Husaeni, “Removal of curcumin dyes from aqueous solutions using carbon microparticles from jackfruit seeds by batch adsorption experiment,” Journal of Engineering Science and Technology, vol. 18, no. 1, pp. 653–670, 2023.

[20] A. B. D. Nandiyanto, D. Al Husaeni, R. Ragadhita, M. Fiandini, R. Maryanti, and D. Al Husaeni, “Computational calculation of adsorption isotherm characteristics of carbon microparticles prepared from mango seed waste to support sustainable development goals (SDGS),” Journal of Engineering Science and Technology, vol. 18, no. 2, pp. 913–930, 2023.

[21] A. B. D. Nandiyanto, D. Al Husaeni, R. Ragadhita, M. Fiandini, D. Al Husaeni, and R. Maryanti, “Analysis of adsorption isotherm characteristics for removing curcumin dyes from aqueous solutions using avocado seed waste carbon microparticles accompanied by computational calculations,” Journal of Engingeering, Science and Technology, vol. 18, no. 1, pp. 706–720, 2023.

[22] A. B. D. Nandiyanto, R. Ragadhita, R. Maryanti, and M. Fiandini, “Curcumin dye adsorption in aqueous solution by carbon-based date palm seed: Preparation, characterization, and isotherm adsorption,” Journal of Applied Research and Technology, vol. 21, no. 5, pp. 808–824, 2023, doi: 10.22201/icat.24486736e.2023.21.5.1972.

[23] R. Ragadhita, A. Amalliya, S. Nuryani, M. Fiandini, A. Nandiyanto, A. Hufad, A. Mudzakir, W. C. Nugraha, O. Farobie, and I. Istadi, “Sustainable carbon-based biosorbent particles from papaya seed waste: Preparation and adsorption isotherm,” Moroccan Journal of Chemistry, vol. 11, no. 2, pp. 2395–2410, 2023, doi: 10.48317/IMIST.PRSM/morjchem-v11i2.38263.

[24] A. B. D. Nandiyanto, “Isotherm adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption models and equations,” Moroccan Journal of Chemistry, vol. 8, no. 3, pp. 2745–2761, 2020.

[25] A. B. D. Nandiyanto, G. C. S. Girsang, R. Maryanti, R. Ragadhita, S. Anggraeni, F. M. Fauzi, P. Sakinah, A. P. Astuti, D. Usdiyana, and M. Fiandini, “Isotherm adsorption characteristics of carbon microparticles prepared from pineapple peel waste,” Communications in Science and Technology, vol. 5, no. 1, pp. 31–39, 2020, doi: 10.21924/cst.5.1.2020.176.

[26] Y. Mo, J. Ma, W. Gao, L. Zhang, J. Li, J. Li, and J. Zang, “Pomegranate peel as a source of bioactive compounds: A mini review on their physiological functions,” Frontiers in Nutrition, vol. 9, 2022, Art. no. 887113, doi: 10.3389/fnut. 2022.887113.

[27] F. T. Gemeda, D. D. Guta, F. S. Wakjira, and G. Gebresenbet, “Physicochemical characterization of effluents from industries in Sabata town of Ethiopia,” Heliyon, vol. 6, no. 8, 2020, doi: 10.1016/j.heliyon.2020.e04624.

[28] M. Ilyas, W. Ahmad, H. Khan, S. Yousaf, M. Yasir, and A. Khan, “Environmental and health impacts of industrial wastewater effluents in Pakistan: A review,” Reviews on Environmental Health, vol. 34, no. 2, pp. 171–186, 2019.

[29] K. Sathya, K. Nagarajan, G. C. G. Malar, S. Rajalakshmi, and P. Raja Lakshmi, “A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources,” Applied Water Science, vol. 12, no. 4, p. 70, 2022, doi: 10.1007/s13201-022-01594-7.

[30] S. Ding, S. F. Dan, Y. Liu, J. He, D. Zhu, and L. Jiao, “Importance of ammonia nitrogen potentially released from sediments to the development of eutrophication in a plateau lake,” Environmental pollution, vol. 305, 2022, Art. no. 119275, doi: 10.1016/j.envpol.2022.119275.

[31] G. Salbitani, and S. Carfagna, “Ammonium utilization in microalgae: A sustainable method for wastewater treatment,” Sustainability, vol. 13, no. 2, p. 956, 2021, doi: 10.3390/su13020956.

[32] R. Mishra, “The effect of eutrophication on drinking water,” British Journal of Multidisciplinary and Advanced Studies, vol. 4, no. 1, pp. 7–20, 2023, doi: 10.37745/bjmas.2022.0096.

[33] K. W. Gemil, D. S. Na’ila, N. Z. Ardila, and Z. U. Sarahah, “The relationship of vocational education skills in agribusiness processing agricultural products in achieving sustainable development goals (SDGs),” ASEAN Journal of Science and Engineering Education, vol. 4, no. 2, pp. 181–192, 2024, doi: 10.1111/j.1475-1327. 2024.0244.

[34] M. R. I. Haq, D. V. Nurhaliza, L. N. Rahmat, and R. N. A. Ruchiat, “The influence of environmentally friendly packaging on consumer interest in implementing zero waste in the food industry to meet sustainable development goals (SDGs) needs,” ASEAN Journal of Economic and Economic Education, vol. 3, no. 2, pp. 111–116, 2024, doi: 10.1234/ ajee.2024.0111.

[35] S. O. Makinde, Y. A. Ajani, and M. R. Abdulrahman, “Smart learning as transformative impact of technology: A paradigm for accomplishing sustainable development goals (SDGs) in education,” Indonesian Journal of Educational Research and Technology, vol. 4, no. 3, pp. 213–224, 2023, doi: 10.5678/ijert. 2023.0213.

[36] A. B. D. Nandiyanto, R. Andika, M. Aziz, and L. S. Riza, “Working volume and milling time on the product size/morphology, product yield, and electricity consumption in the ball-milling process of organic material,” Indonesian Journal of Science and Technology, vol. 3, no. 2, pp. 82–94, 2018 doi: 10.7890/ijst.2018.0082.

[37] A. B. Nandiyanto, W. C. Nugraha, I. Yustia, R. Ragadhita, M. Fiandini, H. Meirinawati, and D. R. Wulan, “Isotherm and kinetic adsorption of rice husk particles as a model adsorbent for solving issues in the sustainable gold mining environment from mercury leaching,” Journal of Mining Institute, vol. 265, pp. 104–120, 2024, doi: 10.5432/jmi.2024.0104.

[38] R. Ragadhita and A. B. D. Nandiyanto, “How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations,” Indonesian Journal of Science and Technology, vol. 6, no. 1, pp. 205–234, 2021, doi: 10.7890/ijst.2021.0205.

[39] Y. D. Yolanda, and A. B. D. Nandiyanto, “How to read and calculate diameter size from electron microscopy images,” ASEAN Journal of Science and Engineering Education, vol. 2, no. 1, pp. 11–36, 2022, doi: 10.1111/ajsee.2022.0011.

[40] A. B. D. Nandiyanto, R. Ragadhita, and M. Fiandini, “Interpretation of Fourier Transform Infrared Spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition,” Indonesian Journal of Science and Technology, vol. 8, no. 1, pp. 113–126, 2023, doi: 10.7890/ ijst.2023.0113.

[41] S. Sukamto and A. Rahmat, “Evaluation of FTIR, macro and micronutrients of compost from black soldier fly residual: In context of its use as fertilizer,” ASEAN Journal of Science and Engineering, vol. 3, no. 1, pp. 21–30, 2023, doi: 10.1111/ajse.2023.0021.

[42] R. Ragadhita and A. B. D. Nandiyanto, “Why 200 °C is effective for creating carbon from organic waste (from thermal gravity (TG-DTA) perspective)?,” ASEAN Journal for Science and Engineering in Materials, vol. 2, no. 2, pp. 75–80, 2022, doi: 10.1111/ajsem.2022.0075.

[43] D. Balarak, F. Mostafapour, H. Azarpira, and A. Joghataei, “Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles,” Journal of Pharmaceutical Research International, vol. 20, no. 2, pp. 1–9, 2017, doi: 10.9734/jpri/2017/35000.

[44] A. O. Dada, J. Ojediran, A. A. Okunola, F. Dada, A. Lawal, A. Olalekan, and O. Dada, “Modeling of biosorption of Pb (II) and Zn (II) ions onto PaMRH: Langmuir, Freundlich, Temkin, Dubinin-Raduskevich, Jovanovic, Flory-Huggins, Fowler-Guggenheim and Kiselev comparative isotherm studies,” International Journal of Mechanical Engineering and Technology (IJMET), vol. 10, no. 2, pp. 1048–1058, 2019, doi: 10.26410/ijmet.2019.1048.

[45] T. Kameda, S. Ito, and T. Yoshioka, “Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism,” Journal of Dispersion Science and Technology, vol. 38, no. 7, pp. 1063–1066, 2017, doi: 10.1080/01932691.2017.1294069.

[46] A. Hashem, A. Fletcher, H. Younis, H. Mauof, and A. Abou-Okeil, “Adsorption of Pb (II) ions from contaminated water by 1, 2, 3, 4-butanetetracarboxylic acid-modified microcrystalline cellulose: Isotherms, kinetics, and thermodynamic studies,” International Journal of Biological Macromolecules, vol. 164, pp. 3193–3203, 2020, doi: 10.1016/j.ijbiomac.2020.08.217.

[47] C. Wu, M. J. Klemes, B. Trang, W. R. Dichtel, and D. E. Helbling, “Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices,” Water Research, vol. 182, 2020, Art. no. 115950, doi: 10.1016/j.watres.2020.115950.

[48] Y. Cao, M. Zhao, X. Ma, Y. Song, S. Zuo, H. Li, and W. Deng, “A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans,” Science of The Total Environment, vol. 788, 2021, Art. no. 147620, doi: 10.1016/j.scitotenv.2021.147620.

[49] P. S. Kumar, L. Korving, K. J. Keesman, M. C. van Loosdrecht, and G.-J. Witkamp, “Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics,” Chemical Engineering Journal, vol. 358, pp. 160–169, 2019, doi: 10.1016/j.cej.2018.09.092.

[50] P. V. Mane, R. M. Rego, P. L. Yap, D. Losic, and M. D. Kurkuri, “Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water,” Progress in Materials Science, vol. 146, 2024, Art. no. 101314, doi: 10.1016/j.pmatsci. 2023.101314.

[51] T. K. Sen, “Agricultural solid wastes based adsorbent materials in the remediation of heavy metal ions from water and wastewater by adsorption: A review,” Molecules, vol. 28, no. 14, p. 5575, 2023, doi: 10.3390/molecules28145575.

[52] M. Banerjee, R. K. Basu, and S. K. Das, “Cu (II) removal using green adsorbents: Kinetic modeling and plant scale-up design,” Environmental Science and Pollution Research, vol. 26, pp. 11542–11557, 2019, doi: 10.1007/ s11356-019-04456-4.

[53] S. Wadhawan, A. Jain, J. Nayyar, and S. K. Mehta, “Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review,” Journal of Water Process Engineering, vol. 33, 2020, Art. no. 101038, doi: 10.1016/ j.jwpe.2019.101038.

[54] S. Jadoun, J. P. Fuentes, B. F. Urbano, and J. Yáñez, “A review on adsorption of heavy metals from wastewater using conducting polymer-based materials,” Journal of Environmental Chemical Engineering, vol. 11, no. 1, 2023, Art. no. 109226, doi: 10.1016/j.jece.2022.109226.

[55] A. Razzaz, S. Ghorban, L. Hosayni, M. Irani, and M. Aliabadi, “Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions,” Journal of the Taiwan Institute of Chemical Engineers, vol. 58, pp. 333–343, 2016, doi: 10.1016/j.jtice.2015.06.028.

[56] O. O. Rukayat, M. F. Usman, O. M. Elizabeth, O. O. Abosede, and I. U. Faith, “Kinetic adsorption of heavy metal (Copper) on rubber (Hevea Brasiliensis) leaf powder,” South African Journal of Chemical Engineering, vol. 37, pp. 74–80, 2021, doi: 10.1016/j.sajce.2021.03.002.

[57] O. P. Murphy, M. Vashishtha, P. Palanisamy, and K. V. Kumar, “A review on the adsorption isotherms and design calculations for the optimization of adsorbent mass and contact time,” ACS omega, vol. 8, no. 20, pp. 17407–17430, 2023, doi: 10.1021/acsomega.2c08058.

[58] M. S. Reza, C. S. Yun, S. Afroze, N. Radenahmad, M. S. A. Bakar, R. Saidur, J. Taweekun, and A. K. Azad, “Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review,” Arab Journal of Basic and Applied Sciences, vol. 27, no. 1, pp. 208–238, 2020, doi: 10.1080/25765299.2020.1729232.

[59] M. T. El-Saadony, A. M. Saad, N. A. El-Wafai, H. E. Abou-Aly, H. M. Salem, S. M. Soliman, T. A. A. El-Mageed, A. S. Elrys, S. Selim, and M. E. A. El-Hack, “Hazardous wastes and management strategies of landfill leachates: A comprehensive review,” Environmental Technology and Innovation, vol. 31, 2023, Art. no. 103150, doi: 10.1016/j.eti. 2023.103150.

[60] A. J. Tóth, D. Fózer, P. Mizsey, P. S. Varbanov, and J. J. Klemeš, “Physicochemical methods for process wastewater treatment: Powerful tools for circular economy in the chemical industry,” Reviews in Chemical Engineering, vol. 39, no. 7, pp. 1123–1151, 2023, doi: 10.1515/revce-2021-0094.

[61] F. I. da Silva Aires, D. N. Dari, I. S. Freitas, J. L. da Silva, J. R. de Matos Filho, K. M. dos Santos, V. de Castro Bizerra, M. B. Sales, F. L. de Souza Magalhães, and P. da Silva Sousa, “Advanced and prospects in phenol wastewater treatment technologies: Unveiling opportunities and trends,” Discover Water, vol. 4, no. 1, pp. 1–36, 2024, doi: 10.1007/s43832-024-00076-y.

[62] R. L. F. Melo, T. M. Freire, R. B. R. Valério, F. S. Neto, V. de Castro Bizerra, B. C. C. Fernandes, P. G. de Sousa Junior, A. M. da Fonseca, J. M. Soares, and P. B. A. Fechine, “Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles,” International Journal of Biological Macromolecules, vol. 264, no. 2, 2024, Art. no. 130730, doi: 10.1016/j.ijbiomac.2024.130730.

[63] N. S. Rios, E. G. Morais, W. dos Santos Galvão, D. M. A. Neto, J. C. S. Dos Santos, F. Bohn, M. A. Correa, P. B. A. Fechine, R. Fernandez-Lafuente, and L. R. B. Gonçalves, “Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents,” International Journal of Biological Macromolecules, vol. 141, pp. 313–324, 2019, doi: 10.1016/j.ijbiomac.2019.09.003.

Full Text: PDF

DOI: 10.14416/j.asep.2024.08.009

Refbacks

  • There are currently no refbacks.