Page Header

Development of Lion’s Mane Mushroom Extract-Loaded Polyvinyl Alcohol/Chitosan Hydrogel Film Composites for Controlled Release of Ergosterol

Pinida Joradon, Vilai Rungsardthong, Benjawan Thumthanaruk, Savitri Vatanyoopaisarn, Uracha Ruktanonchai, Khomson Suttisintong, Ana C. Mendes

Abstract


Ergosterol is the most prevalent sterol in microbial membranes, which shows a hypoglycemic effect that can be used to treat type 2 diabetes. However, ergosterol has restricted bioavailability and low free-form solubility in hydrophilic conditions. This research aimed to evaluate the properties of bioactive compounds, ergosterol, from Lion's Mane mushroom (LM) mushroom extract and entrap them in polyvinyl alcohol (PVA) and chitosan (CS) hydrogel film composites with/without the crosslinker tetraethoxysilane (TEOS) to increase the solubility of ergosterol. Ergosterol-enriched extract (37.17 mg/g extract) was extracted from the LM by supercritical fluid extraction using CO2 (SCFE-CO2). LM extract showed no cytotoxic effects on the fibroblast cells, with cell viability ranging from 94.60–97.40%, increased cell proliferation, and wound-healing activity at 1 mg/mL of LM extract. Scanning Electron Microscopy revealed that the film exhibited a homogenous structure with swelling ability. The release rate of ergosterol from the film was relatively higher during 30 to 60 min of submersion in phosphate buffer. LM extract-loaded PVA/CS hydrogel film composites have a high potential for wound-healing applications in medical settings. This research challenges further investigation for alternative treatments and offering aids for efficiency improvement in wound-healing. The longer release rate of LM extracts should be investigated in future work.

Keywords



[1]    S. Adepu and S. Ramakrishna, “Controlled drug delivery systems: Current status and future directions,” Molecules, vol. 26, p. 5905, Oct. 2021, doi: 10.3390/molecules26195905.

[2]    H. Chopra, I. Singh, S. Kumar, T. Bhattacharya, M. H. Rahman, R. Akter, and M. T. Kabir, “A comprehensive review on hydrogels,” Current Drug Delivery, vol. 19, pp. 658–675, Jan. 2022, doi: 10.2174/1567201818666210601155558.

[3]    A. Islam, T. Yasin, N. Gull, S. M. Khan, A. Sabir, M. A. Munawwar, M. Shafiq, T. Jamil, and M. H. Raza, “Fabrication and performance characteristics of tough hydrogel scaffolds based on biocompatible polymers,” International Journal of Biological Macromolecules, vol. 92, pp. 1–10, Nov. 2016, doi: 10.1016/j.ijbiomac. 2016.07.010.

[4]    A. Bordbar-Khiabani and M. Gasik, “Smart Hydrogels for Advanced Drug Delivery Systems,” International Journal of Molecular Science, vol. 23, p. 3665, Mar. 2022, doi: 10.3390/ ijms23073665.

[5]    U. Rodsuwan, U. Pithanthanakul, K. Thisayakorn, D. Uttapap, K. Boonpisuttinant, S. Vatanyoopaisarn, B. Thumthanaruk, and V. Rungsardthong, “Preparation and characterization of gamma oryzanol loaded zein nanoparticles and its improved stability,”  Food Science & Nutrition, vol. 9, pp. 616–624, Feb. 2020, doi: 10.1002/ fsn3.1973.

[6]    V. Rungsardthong, N. Wongvuttanakul, N. Kongpien, and P. Chotiwaranon, “Application of fungal chitosan for clarification of apple juice,” Process Biochemistry, vol. 41, pp. 589–593, Mar. 2006, doi: 1016/j.procbio.2005.08.003.

[7]    V. Rungsardthong, U. Pithanthanakul, C. Puttanlek, D. Uttapap, and K. Boonpisuttinant, “Preparation of puerarin-loaded zein nanoparticles: Characterization and stability study,” Journal of Current Science and Technology, vol. 11, pp. 60–70, Frb. 2021, doi: 10.14456/jcst.2021.9.

[8]    T. Thanyacharoen, P. Chuysinuan, S. Techasakul, P. Nooeaid, and S. Ummartyotin, “Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity,” International Journal of Biological Macromolecules, vol. 107, pp. 363–370, Feb. 2018, doi: 10.1016/j.ijbiomac. 2017.09.002.

[9]    A. C. Mendes, E. Shekarforoush, C. Engwer, S. Beeren, C. Gorzelanny, F. Goycoolea, and I. Chronakis, “Co-assembly of chitosan and phospholipids into hybrid hydrogels,” Pure and Applied Chemistry, vol. 88, pp. 905–916, Nov. 2016, doi: 10.1515/pac-2016-0708.

[10]  A. C. Mendes and A. N. Zelikin, “Enzyme prodrug therapy engineered into biomaterials,” Advanced Functional Materials, vol. 24, pp. 5202–5210, Jun. 2014, doi: 10.1002/adfm. 201304312.

[11] M. Abbas, M. Arshad, M. K. Rafique, A. A. Altalhi, D. I. Saleh, M. A. Ayub, S. Sharif, M. Riaz, S. Z. Alshawwa, N. Masood, A. Nazir, and M. Iqbal, “Chitosan-polyvinyl alcohol membranes with improved antibacterial properties contained Calotropis procera extract as a robust wound-healing agent,” Arabian Journal of Chemistry, vol. 15, May 2022, Art. no. 103766, doi: 10.1016/j.arabjc.2022.103766.

[12] K. Kaliaperumal, K. Subramanian, R. Thirunavukkarasu, R. K. Varadharajan, R. Binsuwaidan, N. M. Alabdallah, N. Alshammari, M. Saeed, K. Anbarasu, and R. Karunakaran, “Antibacterial wound dressing with hydrogel from chitosan and polyvinyl alcohol from the red cabbage extract loaded with silver nanoparticles,” Green Processing and Synthesis, vol. 12, pp. 1203–1215, Jun. 2023, doi:10.1515/gps-2023-0035.

[13]  T. Thanyacharoen, P. Chuysinuan, S. Techasakul, A. N. L. Noenplab, and S. Ummartyotin, “The chemical composition and antioxidant and release properties of a black rice (Oryza sativa L.)-loaded chitosan and polyvinyl alcohol composite,” Journal of Molecular Liquids, vol. 248, pp. 1065–1070, Dec. 2017, doi: 10.1016/ j.molliq.2017.09.054.

[14]  B. Thongbai, S. Rapior, K. D. Hyde, K. Wittstein, and M. Stadler, “Hericium erinaceus, an amazing medicinal mushroom,” Mycological Progress, vol. 14, Sep. 2015, doi: 10.1515/jcim-2013-0001.

[15]  Z. G. Chen, P. Buchanan, and S. Y. Quek, “Identification and determination of compounds unique to Hericium in an edible New Zealand mushroom Hericium novae-zealandiae,” Food Analytical Methods, vol. 15, pp. 67–74, Aug. 2022, doi: 10.1007/s12161-021-02098-x.

[16]  P. Joradon, V. Rungsardthong, U. Ruktanonchai, K. Suttisintong, T. Iempridee, B. Thumthanaruk, S. Vatanyoopaisarn, and D. Uttapap, “A comparative study of conventional and supercritical carbon dioxide extraction methods for the recovery of bioactive compound from Lion’s Mane mushroom (Hericium erinaceus),” in E3S Web Conference, vol. 355, 2022, Art. no. 02015.

[17]  P. Joradon, V. Rungsardthong, U. Ruktanonchai, K. Suttisintong, T. Iempridee, B. Thumthanaruk, S. Vatanyoopaisarn, N. Sumonsiri, and D. Uttapap, “Ergosterol content and antioxidant activity of Lion’s Mane mushroom (Hericium erinaceus) and its induction to vitamin D2 by UVC-irradiation,” in International Conference on Agricultural and Biological Sciences, pp. 19–28, 2022.

[18]  N. Tachabenjarong, V. Rungsardthong, U. Ruktanonchi, S. Poodchakarn, B. Thumthanaruk, S. Vatanyoopaisarn, K. Suttisintong, T. Iempridee, and D. Uttapap, “Bioactive compounds and antioxidant activity of Lion’s Mane mushroom (Hericium erinaceus) from different growth periods,” in E3S Web Conference, vol. 355, 2022, Art. no. 02016.

[19]  M. Gąsecka, M. Siwulski, Z. Magdziak, S. Budzyńska, K. Stuper-Szablewska, P. Niedzielski, and M. Mleczek, “The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers.,” Journal of Food Science and Technology, vol. 57, pp. 513–525, Feb. 2020, doi: 10.1007/s13197-019-04081-1.

[20]  J. C. M. Barreira and I. C. F. R. Ferreira, “Steroids in natural matrices: chemical features and bioactive properties,” Biotechnology of Bioactive Compounds: Sources and Applications, vol. 215, Jan. 2015, doi:10.1002/9781118733103.

[21]  W. Huan, Z. Tianzhu, L. Yu, W. Shumin, W. Huan, Z. Tianzhu, L. Yu, and W. Shumin, “Effects of ergosterol on COPD in mice via JAK3/STAT3/NFkappa-B pathway,” Inflammation, vol. 40, pp. 884–893, 2017, doi: 10.1007/ s10753-017-0533-5.

[22]  R. C. G. Corrêa, R. M. Peralta, A. Bracht, I. C. F. R. Ferreira, “The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols,” Trends in Food Science & Technology, vol. 67, pp. 19–35, Sep. 2017, doi: 10.1016/j.tifs.2017.06.012.

[23]  P. Joradon, V. Rungsardthong, U. Ruktanonchai, K. Suttisintong, B. Thumthanaruk, S. Vatanyoopaisarn, T. Benjawan, V. Savitri, U. Dudsadee, and A. C. Mendes, “Extraction of bioactive compounds from Lion's Mane mushroom by-product using supercritical CO2 extraction.” Journal of Supercritical Fluids, vol. 206, Apr. 2024, Art. no. 106162, doi: 10.1016/j.supflu. 2023.106162.

[24]  M. Aranya, J. Pensak, A. Hiroyuki, A. Toshihiro, and M. Jiradej, “Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae),” Natural Product Research, vol. 24, pp. 1915–1926, Nov. 2010, doi: 10.1080/14786419.2010.488631.

[25]  V. Vichai and K. Kirtikara, “Sulforhodamine B colorimetric assay for cytotoxicity screening,” Nature Protocol, vol. 1, pp. 1112–1116, Aug. 2006, doi: 10.1038/nprot.2006.179.

[26]  A. A. Muhammad, N. A. Pauzi, P. Arulselvan, F. Abas, and S. Fakurazi, “In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam.,” Biomedical Research International, Dec. 2013, Art. no. 974580, doi: 10.1155/2013/974580.

[27]  Z. Yongxia, X. Jian, H. Suyuan, N. Aixin, and Z. Lihong, “Isolation and characterization of ergosterol from Monascus anka for anti-lipid peroxidation properties,” Journal de Mycologie Médicale, vol. 30, Dec. 2020, Art. no. 101038, doi: 10.1016/j.mycmed.2020.101038.

[28]  T. Xia, H. Lei, J. Wang, Y. He, H. Wang, L. Gao, T. Qi, X. Xiong, L. Liu, and Y. Zhu,  “Identification of an ergosterol derivative with anti-melanoma effect from the sponge-derived fungus Pestalotiopsis sp. XWS03F09,” Frontiers in Microbiology, vol. 12, Oct. 2022, Art. no. 1008053, doi: 10.3389/fmicb.2022.1008053.

[29]  P. Rangsinth, R. Sharika, N. Pattarachotanant, C. Duangjan, C. Wongwan, C. Sillapachaiyaporn, S. Nilkhet, N. Wongsirojkul, A. Prasansuklab, T. Tencomnao, G. P. Leung, and C. Siriporn, “Potential beneficial effects and pharmacological properties of ergosterol, a common bioactive compound in edible mushrooms,” Foods, vol. 12, p. 2529, Jun. 2023, doi: 10.3390/foods12132529.

[30]  Z. Dong, S. Iqbal, and Z. Zhao, “Preparation of ergosterol-loaded nanostructured lipid carriers for enhancing oral bioavailability and antidiabetic nephropathy effects,” AAPS PharmSciTech, vol. 21, Jan. 2020, doi: 10.1208/s12249-019-1597-3.

[31]  A. Ziemlewska, M. Wójciak, K. M. Lal, M. Z. Dziok, T. Bujak, Z. N. Łukaszewska, D. Szczepanek, and I. Sowa, “Assessment of cosmetic properties and safety of use of model washing gels with Reishi, Maitake and Lion’s Mane extracts,” Molecules, vol. 27, p. 5090, Aug. 2022, doi: 10.3390/molecules27165090.

[32]  M. Grajzer, B. Wiatrak, T. Gębarowski, A. Matkowski, H. Grajeta, E. Rój, A. Kulma, and A. Prescha, “Chemistry, oxidative stability and bioactivity of oil extracted from Rosa rugosa (Thunb.) seeds by supercritical carbon dioxide,” Food Chemistry, vol. 335, Jan. 2021, Art. no. 127649, doi: 10.1016/j.foodchem.2020.127649.

[33]  P. Martin, S. J. Leibovich, P. Martin, and S. J. Leibovich, “Inflammatory cells during wound repair: The good, the bad and the ugly,” Trends in Cell Biology, vol. 15, pp. 599–607, Nov. 2005, doi:   10.1016/j.tcb.2005.09.002.

[34] Y. Y. Lim, A. M. A. Zaidi, M. Haque, and A. Miskon, “Relationship between tumorigenesis, metastasis, immune evasion, and chemoresistance in osteosarcoma therapy,” Journal of Applied Pharmaceutical Science, vol. 14, pp. 64–69, Jan. 2024, doi: 10.7324/JAPS.2023.149907.

[35]  M. A. Abdulla, A. A. Fard, V. Sabaratnam, K. H. Wong, U. R. Kuppusamy, N. Abdullah, and S. Ismail, “Potential activity of aqueous extract of culinary-medicinal Lion's Mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (Aphyllophoromycetideae) in accelerating wound healing in rats,” International Journal of Medicinal Mushrooms, vol. 13, Jan. 2011,          Art. no. 22135902, doi:  10.1615/intjmedmushr. v13.i1.50.

[36]  J. Y. Wong, M. A. Abdulla, J. Raman, C. Phan, U. R. Kuppusamy, S. Golbabapour, and V. Sabaratnam, “Gastroprotective effects of Lion's Mane mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) extract against ethanol-induced ulcer in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Sep. 2013, Art. no. 492976, doi: 10.1155/2013/492976.

[37]  M. Qin, Y. Geng, Z. Lu, H. Xu, J. S. Shi, X. Xu, Z. H. Xu, “Anti-inflammatory effects of ethanol extract of Lion's Mane medicinal mushroom, Hericium erinaceus (Agaricomycetes), in mice with Ulcerative Colitis,” International Journal of Medicinal Mushrooms, vol. 18, pp. 227–234, 2016, doi: 10.1615/IntJMedMushrooms.v18.i3.50.

[38]  J. Sharifi-Rad, M. Butnariu, S. M. Ezzat, C. O. Adetunji, M. Imran, S. R. Sobhani, T. Tufail, T. Hosseinabadi, K. Ramírez-Alarcón, M. Martorell, A. Maroyi, and N. Martins, “Mushrooms-rich preparations on wound healing: From nutritional to medicinal attributes,” Frontier in Pharmacology, vol. 16, Sep. 2020, Art. no. 567518, doi: 10.3389/ fphar.2020.567518.

[39]  G. Montalbano, “Evaluation of the antimicrobial, anti-inflammatory, regenerative and wound healing properties of the bracket fungus Ganoderma lucidum,” Ph.D. dissertation, Queensland University of Technology, Queensland, Australia, 2018, doi: 10.5204/thesis.eprints.116592.

[40]  A. Gupta, V. Kirar, G. K. Keshri, S. Gola, A. Yadav, P. S. Negi, and M. Kshipra, “Wound healing activity of an aqueous extract of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes),” International Journal of Medicinal Mushrooms, vol. 16, pp. 345–354, Oct. 2014, doi: 10.1615/ IntJMedMushrooms.v16.i4.50.

[41]  Z. A. Amin, H. M. Ali, M. A. Alshawsh, P. H. Darvish, and M. A. Abdulla, “Application of Antrodia camphorata promotes rat’s wound healing in vivo and facilitates fibroblast cell proliferation in vitro. Evidence-Based Complement,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, Oct. 2015, Art. no. 317693, doi: 10.1155/2015/317693.

[42]  E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” Journal of Advanced Research, vol. 6, pp. 105–121, Mar. 2015, doi: 10.1016/j.jare.2013.07.006.

[43]  J. Zhou, S. Lin, H. Zeng, J. Liu, B. Li, Y. Xu, X. Zhao, and G. Chen, “Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels,” Materials Horizons, vol. 7, pp. 2936–2943, Aug. 2020, doi: 10.1039/D0MH00735H.

[44] A. Verma, “A perspective on the potential material candidate for railway sector applications: PVA based functionalized graphene reinforced composite,” Applied Science and Engineering Progress, vol. 15, Mar. 2022, Art. no. 5727, doi: 10.14416/j.asep.2022.03.009.

[45]  H. Chopra, S. Bibi, S. Kumar, M. S. Khan, P. Kumar, and I. Singh, “Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application,” Gels, vol. 8, Feb. 2022, Art. no. 35200493, doi: 10.3390/gels8020111.

[46]  P. Chuysinuan, N. Chunshom, P. Kotcharat, T. Thanyacharoen, S. Techasakul, and S. Ummartyotin, “The encapsulation of green tea extract in cyclodextrin and loading into chitosan-based composites: Controlled-release behavior and antioxidant properties,” Journal of Polymers and the Environment, vol. 29, pp. 2628–2638, Jan. 2021,  doi: 10.1007/s10924-021-02058-w.

[47]  Y. Liang, X. Zhao, P. X. Ma, B. Guo, Y. Du, and X. Han, “pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocafeic acid and oxidized pullulan for localized drug delivery,” Journal of Colloid and Interface Science, vol. 536, pp. 224–234, Feb. 2019, doi: 10.1016/j.jcis.2018.10.056.

[48] G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahapatra, H. W. Kim, and J. C. Knowles, “Sol-gel based materials for biomedical applications,” Progress in Materials Science, vol. 77, pp. 1–79, 2016, doi: 10.1016/ j.pmatsci.2015.12.001.

[49]  L. Lei, Y. Bai, X. Qin, J. Liu, W. Huang, and Q. Lv, “Current understanding of hydrogel for drug release and tissue engineering,” Gels, vol. 8, pp. 301, May 2022, doi: 10.3390/gels8050301.

[50]  Y. Biao, C. Yuxuan, T. Qi, Y. Ziqi, Z. Yourong, D. J. McClements, and C. Chongjiang, “Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels,” Food Hydrocolloids, vol. 97, Dec. 2019, Art. no. 105197, doi: 10.1016/ j.foodhyd.2019.105197.

[51]  H. Cho, D. Lee, S. Hong, H. Kim, K. Jo, C. Kim, and I. Yoon, “Surface modification of ZrO2  nanoparticles with TEOS to prepare transparent ZrO2@SiO2-PDMS nanocomposite films with adjustable refractive indices,” Nanomaterials, vol. 12, p. 2328, Jul. 2022, doi: 10.3390/ nano12142328.

[52] Y. Y. Lim, A. Miskon, and A. M. A. Zaidi, “CuZn complex used in electrical biosensors for drug delivery systems,” Materials, vol. 15, pp. 7672, Nov. 2022, doi: 10.3390/ma15217672.

[53] Y. Y. Lim, A. M. A. Zaidi, and A. Miskon, “Composing on-program triggers and on-demand Stimuli into biosensor drug carriers in drug delivery systems for programmable arthritis therapy,” Pharmaceuticals, vol. 15, p. 1330, Oct. 2022, doi: 10.3390/ph15111330.

[54] Y. Y. Lim, A. M. A. Zaidi, and A. Miskon, “Combining copper and zinc into a biosensor for anti-chemoresistance and achieving osteosarcoma therapeutic efficacy,” Molecules, vol. 28, p. 2920, Mar. 2023, doi: 10.3390/molecules28072920.

[55] M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, pp. 689–718, Sep. 2021, doi: 10.14416/j.asep.2021. 09.005.

[56] Y. Y. Lim, A. Miskon, A. M. A. Zaidi, M. M. H. Megat Ahmad, and M. Abu Bakar, “Structural characterization analyses of low brass filler biomaterial for hard tissue implanted scaffold applications,” Materials, vol. 15, p. 1421, Feb. 2022, doi: 10.3390/ma15041421.

[57] Y. Y. Lim, A. Miskon, and A. M. A. Zaidi, “Structural strength analyses for low brass filler biomaterial with anti-Trauma effects in articular cartilage scaffold design,” Materials, vol. 5, p. 4446, Jun. 2022, doi: 10.3390/ma15134446.

[58] Y. Y. Lim, A. Miskon, A. M. A. Zaidi, M. M. H. M. Ahmad, and M. A. Bakar, “Numerical simulation study on relationship between the fracture mechanisms and residual membrane stresses of metallic material,” Journal of Functional Biomaterials, vol. 13, p. 20, Feb. 2022, doi: 10.3390/jfb13010020.

Full Text: PDF

DOI: 10.14416/j.asep.2024.08.008

Refbacks

  • There are currently no refbacks.