Page Header

Circular Economy Integration in 1G+2G Sugarcane Bioethanol Production: Application of Carbon Capture, Utilization and Storage, Closed-Loop Systems, and Waste Valorization for Sustainability

Rich Jhon Paul Latiza, Rugi Vicente Rubi

Abstract


Bioethanol production is a vital player in the renewable energy landscape. However, it faces pressing issues regarding carbon emissions and resource management. Traditional open-loop systems generate substantial waste and pollution, exacerbating environmental concerns. Various emerging technologies offer promising solutions. Carbon Capture, Utilization, and Storage (CCUS) presents avenues for tackling carbon emissions. Utilization transforms CO2 emissions into valuable products, while Storage securely stores emissions to prevent atmospheric release. Closed-loop processes and waste valorization capitalize on material reuse, conserving natural resources, and minimizing waste. By promoting resource efficiency and waste minimization, circular economy principles align seamlessly with CCUS, closed-loop systems, and waste valorization. This study delves into utilizing Utilization technologies tailored to sugarcane 1G+2G bioethanol production, evaluates CO2 capture options, and presents applications. Storage strategies suitable for bioethanol production facilities are scrutinized, and deployment options are explored, highlighting the closed-loop system and waste valorization's role in waste reduction and environmental preservation. Through synergistic integration, these technologies pave the way for sustainable sugarcane bioethanol production, addressing economic and technological challenges while fostering innovation and collaboration. This comprehensive study will serve as a guide for transitioning to a circular economy model in bioethanol production.

Keywords



[1]           J. R. Melendez, B. Mátyás, S. Hena, D. A. Lowy, and A. El Salous, “Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses,” Renewable and Sustainable Energy Reviews, vol. 160, 2022, Art. no. 112260.

 

[2]           J. Wang and W. Azam, “Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries,” Geoscience Frontiers, vol. 15, no. 2, 2024, Art. no. 101757.

 

[3]           B. Ninchan, C. Sirisatesuwon, K. Rattanaporn, and K. Sriroth, “Understanding and efficiently manipulating environmental stress caused by metal ions to improve ethanol fermentation,” Applied Science and Engineering Progress, vol. 15, no. 4, 2021, Art. no. 4717, doi: 10.14416/j.asep.2021.06.004.

 

[4]           P. Venkatachalam, M. Sriariyanun, S. R. Shanmugam, and R. Selvasembian, “Biochar as a catalyst in biorefineries: A sustainable recovery of waste materials,” Applied Science and Engineering Progress, vol. 17, no. 2, 2023, Art. no. 7290, doi: 10.14416/j.asep.2023.11.008.

 

[5]           S. Rajeswari, D. Baskaran, P. Saravanan, M. Rajasimman, N. Rajamohan, and Y. Vasseghian, “Production of ethanol from biomass – Recent research, scientometric review and future perspectives,” Fuel, vol. 317, 2022, Art. no. 123448.

 

[6]           S. Singh, A. Kumar, N. Sivakumar, and J. P. Verma, “Deconstruction of lignocellulosic biomass for bioethanol production: Recent advances and future prospects,” Fuel, vol. 327, 2022, Art. no. 125109.

 

[7]           M. Hans, Y. Lugani, A. K. Chandel, R. Rai, and S. Kumar, “Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India,” Biomass Conversion and Biorefinery, vol. 13, no. 9, 2023, Art. no. 7423.

 

[8]           T. Bera, K. S. Inglett, P. W. Inglett, L. Vardanyan, A. C. Wilkie, G. A. O'Connor, and K. R. Reddy, “Comparing first- and second-generation bioethanol by-products from sugarcane: Impact on soil carbon and nitrogen dynamics,” Geoderma, vol. 384, 2021, Art. no. 114818.

 

[9]           S. Jain and S. Kumar, “A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives,” Energy, vol. 296, 2024, Art. no. 131130.

 

[10]         Y. Zheng, H. H. Ngo, H. Luo, R. Wang, C. Li, C. Zhang, and X. Wang, “Production of cost-competitive bioethanol and value-added co-products from distillers’ grains: Techno-economic evaluation and environmental impact analysis,” Bioresource Technology, vol. 397, 2024, Art. no. 130470.

 

[11]         P. Zhang, L. Zhuo, M. Li, Y. Liu, and P. Wu, “Assessment of advanced bioethanol potential under water and land resource constraints in China,” Renewable Energy, vol. 212, 2024, Art. no. 359–371.

 

[12]         S. Kirdponpattara, S. Chuetor, M. Sriariyanun, and M. Phisalaphong, “Bioethanol production by Pichia stipitis immobilized on water hyacinth and thin-shell silk cocoon,” Applied Science and Engineering Progress, vol. 15, no. 3, 2021, Art. no. 4662, doi: 10.14416/j.asep.2021.03.006.

 

[13]         C. E. C. Guimarães, F. S. Neto, V. de Castro Bizerra, J. G. Andrade do Nascimento, R. B. R. Valério, P. G. de Sousa Junior, A. K. de Sousa Braz, R. L. F. Melo, J. de França Serpa, R. K. C. de Lima, A. P. Guimarães, M. C. M. de Souza, A. A. S. Lopes, M. A. de Sousa Rios, A. S. Desai, M. Bilal, W. Smułek, T. Jesionowski, and J. C. S. dos Santos, “Sustainable bioethanol production from first- and second-generation sugar-based feedstocks: Advanced bibliometric analysis,” Bioresource Technology Reports, vol. 23, 2023, Art. no. 101543.

 

[14]         M. Hans, S. Garg, V. Pellegrini, J. Filgueiras, E. De Azevedo, F. Guimaraes, A. K. Chandel, I. Polikarpov, B. S. Chadha, and S. Kumar, “Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse,” Journal of Cleaner Production, vol. 281, 2021, Art no. 123922.

 

[15]         L. E. Bender, S. T. Lopes, K. S. Gomes, R. J. B. Devos, and L. M. Colla, “Challenges in bioethanol production from food residues,” Bioresource Technology Reports, vol. 19, 2022, Art. no. 101171.

 

[16]         A. Devi, S. Bajar, P. Sihag, Z. U. D. Sheikh, A. Singh, J. Kaur, N. Bishnoi, and D. Pant, “A panoramic view of technological landscape for bioethanol production from various generations of feedstocks,” Bioengineered, vol. 14, no. 1, 2023, Art. no. 81.

 

[17]         H. McLaughlin, A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. Sovacool, M. Bazilian, J. Kim, and S. Griffiths, “Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world,” Renewable and Sustainable Energy Reviews, vol. 177, 2023, Art. no. 113215.

 

[18]         F. Caponio, A. Piga, and M. Poiana, “Valorization of food processing by-products,” Foods, vol. 11, no. 20, 2022, Art. no. 3246.

 

[19]         C.-Y. Chiu, C.-Y. Cheng, and T.-Y. Wu, “Integrated operational model of green closed-loop supply chain,” Sustainability, vol. 13, no. 11, 2021, Art. no. 6041.

 

[20]         T. Scapini, C. Bonatto, C. Dalastra, S. F. Bazoti, A. F. Camargo, S. L. Alves Júnior, B. Venturin, R. L. R. Steinmetz, A. Kunz, G. Fongaro, and H. Treichel, “Bioethanol and biomethane production from watermelon waste: A circular economy strategy,” Biomass and Bioenergy, vol. 170, 2023, Art. no. 106719.

 

[21]         H. Jiao, K. Tsigkou, T. Elsamahy, K. Pispas, J. Sun, G. Manthos, M. Schagerl, E. Sventzouri, R. Al-Tohamy, M. Kornaros, and S. Ali, “Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives,” Ecotoxicology and Environmental Safety, vol. 270, 2024, Art. no. 115908.

 

[22]         S. A. Razzak, R. A. Lucky, M. M. Hossain, and H. deLasa, “Valorization of microalgae biomass to biofuel production: A review,” Energy Nexus, vol. 7, 2022, Art. no. 100139.

 

[23]         F. Antunes, I. F. Mota, J. Da Silva Burgal, M. Pintado, and P. S. Costa, “A review on the valorization of lignin from sugarcane by-products: From extraction to application,” Biomass and Bioenergy, vol. 166, 2022, Art. no. 106603.

 

[24]         S. Banerjee, R. Singh, and V. Singh, “Bioenergy crops as alternative feedstocks for recovery of anthocyanins: A review,” Environmental Technology & Innovation, vol. 29, 2023, Art. no. 102977.

 

[25]         R. C. Neves, B. C. Klein, R. J. Da Silva, M. C. A. F. Rezende, A. Funke, E. Olivarez-Gómez, A. Bonomi, and R. Maciel-Filho, “A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production,” Renewable and Sustainable Energy Reviews, vol. 119, 2020, Art. no. 109607.

 

[26]         A. Althuri and S. Venkata Mohan, “Emerging innovations for sustainable production of bioethanol and other mercantile products from circular economy perspective,” Bioresource Technology, vol. 363, 2022, Art. no. 128013.

 

[27]         Y. K. Leong and J.-S. Chang, “Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities,” Bioresource Technology, vol. 359, 2022, Art. no. 127459.

 

[28]         O. A. Odunlami, D. A. Vershima, T. E. Oladimeji, S. Nkongho, S. K. Ogunlade, and B. S. Fakinle, “Advanced techniques for the capturing and separation of CO2 – A review,” Results in Engineering, vol. 15, 2022, Art. no. 100512.

 

[29]         W. Wang, C. Zeng, and N. Tsubaki, “Recent advancements and perspectives of the CO2 hydrogenation reaction,” Green Carbon, vol. 1, no. 2, 2023, Art. no. 133.

 

[30]         Y. Lee, S. Lee, D. Seo, S. Moon, Y.-H. Ahn, and Y. Park, “Highly efficient separation and equilibrium recovery of H2/CO2 in hydrate-based pre-combustion CO2 capture,” Chemical Engineering Journal, vol. 481, 2024, Art. no. 148709.

 

[31]         M. Alsunousi and E. Kayabasi, “The role of hydrogen in synthetic fuel production strategies,” International Journal of Hydrogen Energy, vol. 54, 2024, Art. no. 1169.

 

[32]         H. Onyeaka, T. Miri, K. Obileke, A. Hart, C. Anumudu, and Z. T. Al-Sharify, “Minimizing carbon footprint via microalgae as a biological capture,” Carbon Capture Science & Technology, vol. 1, 2021, Art. no. 100007.

 

[33]         M. Kazemian and B. Shafei, “Carbon sequestration and storage in concrete: A state-of-the-art review of compositions, methods, and developments,” Journal of CO2 Utilization, vol. 70, 2023, Art. no. 102443.

 

[34] Y. Ahmadi, M. Mohammadi, and M. Sedighi, “Introduction to chemical enhanced oil recovery,” in Chemical Methods. Elsevier, 2022, pp. 1–32.

 

[35]         X. Ma, D. He, Y. Wei, J. Guo, and C. Jia, “Enhanced gas recovery: Theory, technology, and prospects,” Natural Gas Industry B, vol. 10, no. 4, 2023, Art. no. 393.

 

[36]         A. Luo, Y. Li, X. Chen, Z. Zhu, and Y. Peng, “Review of CO2 sequestration mechanism in saline aquifers,” Natural Gas Industry B, vol. 9, no. 4, 2022, Art. no. 383.

 

[37]         S. Restrepo-Valencia and A. Walter, “BECCS opportunities in Brazil: Comparison of pre and post-combustion capture in a typical sugarcane mill,” International Journal of Greenhouse Gas Control, vol. 124, 2023, Art. no. 103859.

 

[38]         L. Meng, T. Kai, S. Nakao, and K. Yogo, “Modeling of pre-combustion carbon capture with CO2-selective polymer membranes,” International Journal of Greenhouse Gas Control, vol. 123, 2023, Art. no. 103830.

 

[39]         A. Yagmur Goren, D. Erdemir, and I. Dincer, “Comprehensive review and assessment of carbon capturing methods and technologies: An environmental research,” Environmental Research, vol. 240, 2024, Art. no. 117503.

 

[40]         O. Akeeb, L. Wang, W. Xie, R. Davis, M. Alkasrawi, and S. Toan, “Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review,” Journal of Environmental Management, vol. 313, 2022, Art. no. 115026.

 

[41]         J. Du, W. Yang, L. Xu, L. Bei, S. Lei, W. Li, H. Liu, B. Wang, and L. Sun, “Review on post-combustion CO2 capture by amine blended solvents and aqueous ammonia,” Chemical Engineering Journal, vol. 488, 2024, Art. no. 150954.

 

[42]         L. Cai, L. Tan, Y. Liang, Y. Fu, and Y. Guan, “Investigation on the integration of supercritical CO2 cycle with natural gas oxy-fuel combustion power plant,” Chemical Engineering Research and Design, vol. 205, 2024, Art. no. 148.

 

[43]         S. Yadav and S. S. Mondal, “A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology,” Fuel, vol. 308, 2022, Art. no. 122057.

 

[44]         C. Chen and S. Yang, “The energy demand and environmental impacts of oxy-fuel combustion vs. post-combustion capture in China,” Energy Strategy Reviews, vol. 38, 2021, Art. no. 100701.

 

[45]         Y. Li, B. Guan, J, Guo, Y. Chen, Z. Ma, Z. Zhuang, C. Zhu, H. Dang, L. Chen, K. Shu, K. Shi, Z. Guo, C. Yi, J. Hu, X. Hu, and Z. Huang, “Renewable synthetic fuels: Research progress and development trends,” Journal of Cleaner Production, vol. 450, 2024, Art. no. 141849.

 

[46]         K. Zhi, Z. Li, B. Wang, J. J. Klemeš, and L. Guo, “A review of CO2 utilization and emissions reduction: From the perspective of the chemical engineering,” Process Safety and Environmental Protection, vol. 172, 2023, Art. no. 681.

 

[47]         Y. Yang, S. Tang, and J. P. Chen, “Carbon capture and utilization by algae with high concentration CO2 or bicarbonate as carbon source,” Science of the Total Environment, vol. 918, 2024, Art. no. 170325.

 

[48]         S. Tazikeh, S. Zendehboudi, S. Ghafoori, A. Lohi, and N. Mahinpey, “Algal bioenergy production and utilization: Technologies, challenges, and prospects,” Journal of Environmental Chemical Engineering, vol. 10, no. 3, 2022, Art. no. 107863.

 

[49]         Y. Gao, Y. Jiang, Y. Tao, P. Shen, and C. S. Poon, “Accelerated carbonation of recycled concrete aggregate in semi-wet environments: A promising technique for CO2 utilization,” Cement and Concrete Research, vol. 180, 2024, Art. no. 107486.

 

[50] Z. Chen, L. Li, Y. Su, J. Liu, Y. Hao, and X. Zhang, “Investigation of CO2-EOR and storage mechanism in Injection-Production coupling technology considering reservoir heterogeneity,” Fuel, vol. 368, 2024, Art. no. 131595.

 

[51]         R. Khudhair Mohammed and H. Farzaneh, “Investigating the impact of the future carbon market on the profitability of carbon capture, utilization, and storage (CCUS) projects; The case of oil fields in southern Iraq,” Energy Conversion and Management: X, vol. 22, 2024, Art. no. 100562.

 

[52]         M. Moreaux, J.-P. Amigues, G. Van Der Meijden, and C. Withagen, “Carbon capture: Storage vs. utilization,” Journal of Environmental Economics and Management, 2024, Art. no. 102976.

 

[53]         R. Calvo, R. Taragan, and R. Rosenzweig, “Influence of geostatistical interpolation method and cell-size resolution on CO2 storage capacity estimates: Application to saline aquifers with sparse data availability in Israel,” International Journal of Greenhouse Gas Control, vol. 130, 2023, Art. no. 104013.

 

[54]         H. Wen, N. Li, and C.-C. Lee, “Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries,” Energy Economics, vol. 104, 2021, Art. no. 105613.

 

[55]         M. Crippa, D. Guizzardi, F. Pagani, M. Banja, M. Muntean, E. Schaaf, W. Becker, F. Monforti-Ferrario, R. Quadrelli, A. Risquez Martin, P. Taghavi-Moharamli, J. Koykka, G. Grassi, S. Rossi, J. Brandao De Melo, D. Oom, A. Branco, J. San-Miguel, E. Vignati, “GHG emissions of all world countries,” 2023, [Online]. Available: https://www.globalccsinstitute.com

 

[56]         European Commission. Joint Research Centre, M. Crippa, D. Guizzardi, and E. Schaaf, “GHG emissions of all world countries: 2023,” 2023. [Online]. Available: https://data.europa.eu/doi/ 10.2760/953322

 

[57]         C. D. S. Cachola, M. Ciotta, A. Azevedo Dos Santos, and D. Peyerl, “Deploying of the carbon capture technologies for CO2 emission mitigation in the industrial sectors,” Carbon Capture Science & Technology, vol. 7, 2023, Art. no. 100102.

 

[58]         N. Betoret, E. Betoret, and V. T. Glicerina, “Valorization and utilization of food wastes and by-products: Recent trends, innovative technologies and sustainability challenges,” Foods, vol. 13, no. 1, 2023, Art. no. 9.

 

[59]         A. V. Amalia, F. Fibriana, T. Widiatningrum, and R. D. Hardianti, “Bioconversion and valorization of cassava-based industrial wastes to bioethanol gel and its potential application as a clean cooking fuel,” Biocatalysis and Agricultural Biotechnology, vol. 35, 2021, Art. no. 102093.

 

[60]         S. L. Baptista, A. Romaní, J. T. Cunha, and L. Domingues, “Multi-feedstock biorefinery concept: Valorization of winery wastes by engineered yeast,” Journal of Environmental Management, vol. 326, 2023, Art. no. 116623.

 

[61]         Z. Xiao, A. Pramanik, A. K. Basak, C. Prakash, and S. Shankar, “Material recovery and recycling of waste tires-A review,” Cleaner Materials, vol. 5, 2022, Art. no. 100115.

 

[62]         L. Lyu, E. H. Fini, J. Pei, and L. D. Poulikakos, “Aging evolution and sustainability implications of crumb rubberized asphalt binder: A state-of-the-art,” Journal of Cleaner Production, vol. 434, 2024, Art. no. 140202.

 

[63]         N. Tang, C. Xue, G. Hao, W. Huang, H. Zhu, and R. Li, “Sustainable production of eco-friendly rubberized asphalt binders through chemically crosslinking with polymer modifier,” Journal of Cleaner Production, vol. 422, 2023, Art. no. 138633.

 

[64]         W. Wang and D.-J. Lee, “Valorization of anaerobic digestion digestate: A prospect review,” Bioresource Technology, vol. 323, 2021, Art. no. 124626.

 

[65]         A. K. Hossain, V. Sharma, C. Serrano, A. Krishnasamy, and D. Ganesh, “Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine,” Renewable Energy, vol. 222, 2024, Art. no. 119884.

 

[66]         D. C. Bilbao, “Valorization of the waste heat given off in a system alkaline electrolyzer-photovoltaic array to improve hydrogen production performance: Case study Antofagasta, Chile,” International Journal of Hydrogen Energy, vol. 46, no. 61, 2021, Art. no. 31108.

 

[67]         L. T. Nguyen, D.-P. Phan, A. Sarwar, M. H. Tran, O. K. Lee, and E. Y. Lee, “Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion,” Industrial Crops and Products, vol. 161, 2021, Art. no. 113219.

 

[68]         J. Song, H. Zhang, M. Niu, Y. Guo, and H. Li, “Research progress on vanillin synthesis by catalytic oxidation of lignin: A review,” Industrial Crops and Products, vol. 214, 2024, Art. no. 118443.

 

[69]         M. Akutsu, N. Abe, C. Sakamoto, Y. Kurimoto, H. Sugita, M. Tanaka, Y. Higuchi, K. Sakamoto, N. Kamimura, H. Kurihara, E. Masai, and T. Sonoki, “Pseudomonas sp. NGC7 as a microbial chassis for glucose-free muconate production from a variety of lignin-derived aromatics and its application to the production from sugar cane bagasse alkaline extract,” Bioresource Technology, vol. 359, 2022, Art. no. 127479.

 

[70]         H. Cheng, L. Guo, L. Zheng, Z. Qian, and S. Su, “A closed-loop recycling process for carbon fiber-reinforced polymer waste using thermally activated oxide semiconductors: Carbon fiber recycling, characterization and life cycle assessment,” Waste Management, vol. 153, 2022, Art. no. 283.

 

[71]         W. Yuan, Z. Chen, S. E. Grasby, and E. Little, “Closed-loop geothermal energy recovery from deep high enthalpy systems,” Renewable Energy, vol. 177, 2021, Art. no. 976.

 

[72]         S. Liu and A. D. Taleghani, “Analysis of an enhanced closed-loop geothermal system,” Geoenergy Science and Engineering, vol. 231, 2023, Art. no, 212296.

 

[73]         K. F. Beckers, N. Rangel-Jurado, H. Chandrasekar, A. J. Hawkins, P. M. Fulton, and J. W. Tester, “Techno-economic performance of closed-loop geothermal systems for heat production and electricity generation,” Geothermics, vol. 100, 2022, Art. no. 102318.

 

[74]         A. P. Tom, J. S. Jayakumar, M. Biju, J. Somarajan, and M. A. Ibrahim, “Aquaculture wastewater treatment technologies and their sustainability: A review,” Energy Nexus, vol. 4, 2021, Art. no. 100022.

 

[75]         S. Kamali, V. C. A. Ward, and L. Ricardez-Sandoval, “Closed-loop operation of a simulated recirculating aquaculture system with an integrated application of nonlinear model predictive control and moving horizon estimation,” Computers and Electronics in Agriculture, vol. 209, 2023, Art. no. 107820.

 

[76]         T. I. Ahn, J.-S. Yang, S. H. Park, Y.-H. Im, and J. Y. Lee, “Nutrient recirculating soilless culture system as a predictable and stable way of microbial risk management,” Journal of Cleaner Production, vol. 298, 2021, Art. no. 126747.

 

[77]         F. Gartmann, J. Hügly, N. Krähenbühl, N. Brinkmann, Z. Schmautz, T. Smits, and R. Junge, “Bioponics—An organic closed-loop soilless cultivation system: Yields and characteristics compared to hydroponics and soil cultivation,” Agronomy, vol. 13, no. 6, 2023, Art. no. 1436.

 

[78]         R. L. Machado and M. R. Abreu, “Multi-objective optimization of the first and second-generation ethanol supply chain in Brazil using the water-energy-food-land nexus approach,” Renewable and Sustainable Energy Reviews, vol. 193, 2024, Art. no. 114299.

 

[79]         L. P. S. Vandenberghe, K. K. Valladares-Diestra, G. A. Bittencourt, L. A. Zevallos Torres, S. Vieira, S. G. Karp, E. B. Sydney, J. C. De Carvalho, V. Thomaz Soccol, and C. R. Soccol, “Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil,” Renewable and Sustainable Energy Reviews, vol. 167, 2022, Art. no. 112721.

 

[80]         T. A. Moonsamy, M. Mandegari, S. Farzad, and Johann. F. Görgens, “A new insight into integrated first and second-generation bioethanol production from sugarcane,” Industrial Crops and Products, vol. 188, 2022, Art. no. 115675.

 

[81]         M. Broda, D. J. Yelle, and K. Serwańska, “Bioethanol production from lignocellulosic biomass—Challenges and solutions,” Molecules, vol. 27, no. 24, 2022, Art. no. 8717.

 

[82]         A. S. Duden, P. A. Verweij, Y. V. Kraak, L. P. H. Van Beek, N. Wanders, D. J. Karssenberg, E. H. Sutanudjaja, and F. Van Der Hilst, “Hydrological impacts of ethanol-driven sugarcane expansion in Brazil,” Journal of Environmental Management, vol. 282, 2021, Art. no. 111942.

 

[83]         M. S. Nejad, M. Almassi, and M. Ghahderijani, “Life cycle energy and environmental impacts in sugarcane production: A case study of Amirkabir sugarcane agro-industrial company in Khuzestan province,” Results in Engineering, vol. 20, 2023, Art. no. 101545.

 

[84]         A. Micheal and R. R. Moussa, “Investigating the economic and environmental effect of integrating sugarcane bagasse (SCB) fibers in cement bricks,” Ain Shams Engineering Journal, vol. 12, no. 3, 2021, Art. no. 3297.

 

[85]         E. Burak and R. Sakrabani, “Novel carbon capture-based organo-mineral fertilisers show comparable yields and impacts on soil health to mineral fertiliser across two cereal crop field trials in Eastern England,” Field Crops Research, vol. 302, 2023, Art. no. 109043.

 

[86]         X. Liu, H. Kwon, M. Wang, and D. O’Connor, “Life cycle greenhouse gas emissions of Brazilian sugar cane ethanol evaluated with the GREET model using data submitted to RenovaBio,” Environmental Science & Technology, vol. 57, no. 32, 2023, Art. no. 11814.

 

[87]         X. Wu, Y. Lin, Y. Wang, S. Wu, and C. Yang, “Volatile organic compound removal via biofiltration: Influences, challenges, and strategies,” Chemical Engineering Journal, vol. 471, 2023, Art. no. 144420.

 

[88]         C. Sánchez, S. Santos, R. Sánchez, C.-P. Lienemann, and J.-L. Todolí, “Profiling of organic compounds in bioethanol samples of different nature and the related fractions,” ACS Omega, vol. 5, no. 33, 2020, Art. no. 20912.

 

[89]         J. Bu, Y.-T. Wang, M.-C. Deng, and M.-J. Zhu, “Enhanced enzymatic hydrolysis and hydrogen production of sugarcane bagasse pretreated by peroxyformic acid,” Bioresource Technology, vol. 326, 2021, Art. no. 124751.

 

[90]         J. Mbothu, U. Mutwiwa, B. Eshton, and L. Abubakar, “Environmental impact assessment of bioethanol production from sugarcane molasses in Kenya,” Journal of Agriculture, Science and Technology, vol. 20, no. 1, 2021, Art. no. 58.

 

[91]         D. Balakrishnan, “Exploring the potential of sugarcane vinasse for biogas and biofertilizer Production: A catalyst for advancing the bioeconomy,” Sustainable Energy Technologies and Assessments, vol. 61, 2024, Art. no. 103474.

 

[92]         E. A. Mehrizi, A. A. Ebrahimi, H. Saadati, A. Zahedi, M. Ghorbanian, Z. Soltanizadeh, and K. Salemi, “Investigating the effectiveness of anaerobic digestion in the treatment of sugarcane industry wastewater: A systematic review and meta-analysis,” Case Studies in Chemical and Environmental Engineering, vol. 8, 2023, Art. no. 100414.

 

[93]         J. C. De Carvalho, L. P. De Souza Vandenberghe, E. B. Sydney, S. G. Karp, A. I. Magalhães, W. J. Martinez-Burgos, A. B. P. Medeiros, V. Thomaz-Soccol, S. Vieira, L. A. J. Letti, C. Rodrigues, A. L. Woiciechowski, and C. R. Soccol, “Biomethane production from sugarcane vinasse in a circular economy: Developments and innovations,” Fermentation, vol. 9, no. 4, 2023, Art. no. 349.

 

[94]         F. Feder, “Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality,” Agricultural Water Management, vol. 247, 2021, Art. no. 106733.

 

[95]         C. Vasile and M. Baican, “Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials,” Polymers, vol. 15, no. 15, 2023, Art. no. 3177.

 

[96]         S. Imman, P. Khongchamnan, W. Wanmolee, N. Laosiripojana, T. Kreetachat, C. Sakulthaew, C. Chokejaroenrat, and N. Suriyachai, “Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process,” RSC Advances, vol. 11, no. 43, 2021, Art. no. 26773.

 

[97]         M. H. Nasution, S. Lelinasari, and M. G. S. Kelana, “A review of sugarcane bagasse pretreatment for bioethanol production,” IOP Conference Series: Earth and Environmental Science, vol. 963, no. 1, 2022, Art. no. 012014.

 

[98]         A. Shakeel, A. A. Khan, H. F. Alharby, A. A. Bamagoos, H. Tombuloglu, and K. R. Hakeem, “Evaluation of coal fly ash for modulating the plant growth, yield, and antioxidant properties of Daucus carota (L.): A sustainable approach to coal waste recycling,” Sustainability, vol. 13, no. 9, 2021, Art. no. 5116.

 

[99]         A. Kumar, S. Abbas, and S. Saluja, “Utilization of incineration ash as a construction material: A review,” Materials Today: Proceedings, 2023, Art. no. S221478532303211X.

 

[100]      N. Prabhath, B. S. Kumara, V. Vithanage, A. I. Samarathunga, N. Sewwandi, H.-G. Damruwan, S. Lewangamage, and K. R. Koswattage, “Investigation of pozzolanic properties of sugarcane bagasse ash for commercial applications,” ACS Omega, vol. 8, no. 13, 2023, Art. no. 12052.

 

[101]      S. Bashir, S. Bashir, A. B. Bashir, M. J. Khan, J. Iqbal¸ J. Sherani, A. Husain, N. Ahmed, A. N. Shah, M. A. Bukhari, S. Alotaibi, A. El-Shehawi, and Z.-H. El-Shehawi, “The role of different organic amendments to improve maize growth in wastewater irrigated soil,” Journal of King Saud University - Science, vol. 33, no. 7, 2021, Art. no. 101583.

 

[102]      K. Pajampa and T. Wongwuttanasatian, “A trial of filter cake pellets and bagasse co–combustion in a sugar mill steam generator: Thermal and economical assessments,” Energy Reports, vol. 9, 2023, Art. no. 422.

 

[103]      K. Pajampa, K. Junge, A. Suksri, S. Phadungton, T. Ratpukdi, J. Posom, and T. Wongwuttanasatian, “A way towards zero-waste campaign and sustainability in sugar industries; Filter cake valorisation as energy pellets,” Ain Shams Engineering Journal, vol. 15, no. 3, 2024, Art. no. 102459.

 

[104]          E. Tsouko, S. Pilafidis, M. Dimopoulou, K. Kourmentza, and D. Sarris, “Bioconversion of underutilized brewing by-products into bacterial cellulose by a newly isolated Komagataeibacter rhaeticus strain: A preliminary evaluation of the bioprocess environmental impact,” Bioresource Technology, vol. 387, 2023, Art. no. 129667.

 

[105]      T. D. Saliu and N. A. Oladoja, “Nutrient recovery from wastewater and reuse in agriculture: A review,” Environmental Chemistry Letters, vol. 19, no. 3, 2021, Art. no. 2299.

 

[106]      C. M. Lopes, A. M. M. Silva, G. A. Estrada-Bonilla, R. Ferraz-Almeida, J. L. V. Vieira, R. Otto, G. C. Otto, and E. K. B. N. Cardoso, “Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation,” Journal of Cleaner Production, vol. 298, 2021, Art. no. 126821.

 

[107]      M. M. Pratamaningsih and A. Mulyani, “Characteristics and land potential for sugarcane development in Blitar Regency, East Java Province,” IOP Conference Series: Earth and Environmental Science, vol. 648, no. 1, 2021, Art. no. 012007.

 

[108]      D. Arcentales-Bastidas, C. Silva, and A. Ramirez, “The environmental profile of ethanol derived from sugarcane in Ecuador: A life cycle assessment including the effect of cogeneration of electricity in a sugar industrial complex,” Energies, vol. 15, no. 15, 2022, Art. no. 5421.

 

[109]      M. N. Shelar, V. K. Matsagar, V. S. Patil, and S. D. Barahate, “Net energy analysis of sugarcane based ethanol production,” Cleaner Energy Systems, vol. 4, 2023, Art. no. 100059.

 

[110]      S. Rezaei, A. Liu, and P. Hovington, “Emerging technologies in post-combustion carbon dioxide capture & removal,” Catalysis Today, vol. 423, 2023, Art. no. 114286.

 

[111]      J. Fito, N. Tefera, H. Kloos, and S. W. H. Van Hulle, “Physicochemical properties of the sugar industry and ethanol distillery wastewater and their impact on the environment,” Sugar Tech, vol. 21, no. 2, 2019, Art. no. 265.

 

[112]      R. A. Jibhakate, N. W. Nirwan, and K. S. Rambhad, “Enhancing the effectiveness of green technology in manufacturing industry,” Materials Today: Proceedings, vol. 47, 2021, Art. no. 4298.

 

[113]      B. Dziejarski, R. Krzyżyńska, and K. Andersson, “Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment,” Fuel, vol. 342, 2023, Art. no. 127776.

 

[114]      Y. Zheng, S. He, L. Gao, and S. Li, “Analysis and evaluation of the energy saving potential of the CO2 chemical absorption process,” International Journal of Greenhouse Gas Control, vol. 112, 2021, Art. no. 103486.

 

[115]      L. M. C. Vianna, L. De Oliveira, and D. Durante Mühl, “Waste valorization in agribusiness value chains,” Waste Management Bulletin, vol. 1, no. 4, 2024, Art. no. 195.

 

[116]      T. G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad, E. D. Van Hullebusch, and S. Rtimi, “Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives,” Journal of Environmental Management, vol. 290, 2021, Art. no. 112627.

 

[117]      M. Botshekan, A. Moheb, F. Vatankhah, K. Karimi, and M. Shafiei, “Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis,” Energy, vol. 239, 2022, Art. no. 122363.

 

[118]      A. S. Dibazar, A. Aliasghar, A. Behzadnezhad, A. Shakiba, and M. Pazoki, “Energy cycle assessment of bioethanol production from sugarcane bagasse by life cycle approach using the fermentation conversion process,” Biomass Conversion and Biorefinery, 2023, doi: 10.1007/s13399-023-04288-5.

 

[119]      T. M. Gür, “Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies,” Progress in Energy and Combustion Science, vol. 89, 2022, Art. no. 100965.

 

[120]      Y. Jiang, P. Mathias, R. Zheng, C. Freeman, D. Barpaga, D. Malhotra, P. Koech, A. Zwoster, and D. Heldebrant, “Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents,” Journal of Cleaner Production, vol. 388, 2023, Art. no. 135696.

 

[121]      C.-C. Cormos, L. Petrescu, A.-M. Cormos, S. Dragan, C. Dinca, and M. Sandru, “Integration of renewable energy and CO2 capture and utilization technologies for decarbonization of energy intensive process industries,” Computer Aided Chemical Engineering, vol. 52, 2023, Art. no. 2777.

 

[122]      L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, Z. Huang, Y. Wang, J. Li, and P. Xu, “Research progress on CO2 capture and utilization technology,” Journal of CO2 Utilization, vol. 66, 2022, Art. no. 102260.

 

[123]      M. A. Yaverino-Gutiérrez, A. Y. C-H. Wong, L. A. Ibarra-Muñoz, A. C. F. Chávez, J. D. Sosa-Martínez, A. S. Tagle-Pedroza, J. U. Hernández-Beltran, S. Sánchez-Muñoz, J. C. D. Santos, and N. Balagurusamy, “Perspectives and progress in bioethanol processing and social economic impacts,” Sustainability, vol. 16, no. 2, 2024, Art. no. 608.

 

[124]      I. López-Sandin, R. Rodríguez-Jasso, G. Gutiérrez-Soto, G. Rosero-Chasoy, Shiva, K. D. González-Gloria, and H. Ruiz, “Energy assessment of second-generation (2G) bioethanol production from sweet sorghum (Sorghum bicolor (L.) Moench) bagasse,” Agronomy, vol. 12, no. 12, 2022, Art. no. 3106.

 

[125]      G. N. Rivière, F. Ruiz, M. Farooq, M. Sipponen, H. Koivula, T. Jayabalan, P. Pandard, G. Marlair, X. Liao, S. Baumberger, and M. Österberg, “Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite films,” Sustainable Materials and Technologies, vol. 28, 2021, Art. no. e00269.

 

[126]      A. Singh, R. R. Singhania, S. Soam, C.-W. Chen, D. Haldar, S. Varjani, J.-S. Chang, C.-D. Dong, and A. N. Patel, “Production of bioethanol from food waste: Status and perspectives,” Bioresource Technology, vol. 360, 2022, Art. no. 127651.

 

[127]      M. Elsayed, M. Eraky, A. Osman, J. Osman, M. Farghali, A. Rashwan, I. Yacoub, D. Hanelt, and A. Abomohra, “Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: A review,” Environmental Chemistry Letters, vol. 22, no. 2, 2024, Art. no. 609.

 

[128]      S. C. Gowd, P. Ganeshan, V. S. Vigneswaran, M. S. Hossain, D. Kumar, K. Rajendran, H. H. Ngo, and A. Pugazhendhi, “Economic perspectives and policy insights on carbon capture, storage, and utilization for sustainable development,” Science of The Total Environment, vol. 883, 2023, Art. no. 163656.

 

[129]      R. Li and H. Lee, “The role of energy prices and economic growth in renewable energy capacity expansion – Evidence from OECD Europe,” Renewable Energy, vol. 189, 2022, Art. no. 435.

 

[130]      L. Kilian and X. Zhou, “A broader perspective on the inflationary effects of energy price shocks,” Energy Economics, vol. 125, 2023, Art. no. 106893.

 

[131]      M. C. A. Macawile, A. Durian, R. V. Rubi, A. Quitain, T. Kida, R. Tan, L. Razon, and J. Auresenia, “Green synthesis, characterization, and catalytic activity of amine-multiwalled carbon nanotube for biodiesel production,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 17, no. 2, 2022, Art. no. 286.

 

[132]      R. Li and G. C. K. Leung, “The relationship between energy prices, economic growth and renewable energy consumption: Evidence from Europe,” Energy Reports, vol. 7, 2021, Art. no. 1712.

 

[133]      J.-L. Fan, Z. Li, Z. Ding, K. Li, and X. Zhang, “Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models,” Energy Economics, vol. 126, 2023, Art. no. 106972.

 

[134]          Y. W. Pratama and N. Mac Dowell, “Carbon capture and storage investment: Fiddling while the planet burns,” One Earth, vol. 5, no. 4, 2022, Art. no. 434.

 

[135]          A. G. Romero-García, N. Ramírez-Corona, E. Sánchez-Ramírez, H. Alcocer-García, C. De Blasio, and J. G. Segovia-Hernández, “Sustainability assessment in the CO2 capture process: Multi-objective optimization,” Chemical Engineering and Processing - Process Intensification, vol. 182, 2022, Art. no. 109207.

 

[136]          B. K. Sovacool, D. Evensen, T. A. Kwan, and V. Petit, “Building a green future: Examining the job creation potential of electricity, heating, and storage in low-carbon buildings,” The Electricity Journal, vol. 36, no. 5, 2023, Art. no. 107274.

 

[137]          C. Gao, “Incorporating social benefits in optimal design of bioethanol supply chains: A case study in China,” Production & Manufacturing Research, vol. 10, no. 1, 2022, Art. no. 176.

 

[138]          United Nations, “THE 17 GOALS | Sustainable Development,” 2024. [Online]. Available: https://sdgs.un.org/goals

 

[139]          Z. Fona, I. Irvan, R. Tambun, F. Fatimah, A. Setiawan, and A. Adriana, “Review on advance catalyst for biomass gasification,” Applied Science and Engineering Progress, vol. 17, no. 2, 2023, Art. no. 7295, doi: 10.14416/j.asep.2024. 01.001.

 

[140]          K. Zhao, C. Jia, Z. Li, X. Du, Y. Wang, J. Li, Z. Yao, and J. Yao, “Recent advances and future perspectives in carbon capture, transportation, utilization, and storage (CCTUS) technologies: A comprehensive review,” Fuel, vol. 351, 2023, Art. no. 128913.

 

[141]          J. Chen, B. Zhang, L. Luo, F. Zhang, Y. Yi, Y. Shan, B. Liu, Y. Zhou, X. Wang, and X. Lü, “A review on recycling techniques for bioethanol production from lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 149, 2021, Art. no. 111370.

 

[142]          M. Sofokleous, A. Christofi, D. Malamis, S. Mai, and E. M. Barampouti, “Bioethanol and biogas production: An alternative valorisation pathway for green waste,” Chemosphere, vol. 296, 2022, Art. no. 133970.

 

[143]          C. Müller, T. Scapini, A. Rempel, E. R. Abaide, A. F. Camargo, M. T. Nazari, V. Tadioto, C. Bonatto, M. V. Tres, G. L. Zabot, L. M. Colla, H. Treichel, and S. L. Alves, “Challenges and opportunities for third-generation ethanol production: A critical review,” Engineering Microbiology, vol. 3, no. 1, 2023, Art. no. 100056.

Full Text: PDF

DOI: 10.14416/j.asep.2024.07.005

Refbacks

  • There are currently no refbacks.