Pyrolysis of Polyethylene from Plastic Waste using Activated Ende Natural Zeolite as a Catalyst
Abstract
Plastic waste has many complex chemical components. In developing countries, direct incineration is often used to reduce plastic waste, releasing pollutants into the atmosphere. A more environmentally sound alternative is pyrolysis. It can turn plastic waste into an alternative fuel. A catalyst, such as natural zeolite, can reduce the energy used in pyrolysis. However, mineral contaminants must be removed first to get optimum activity. This research was focused on using Ende natural zeolite as a catalyst, determining the properties of the mineral in its activated form. It also investigated the interaction between H-zeolite composition and the operating temperature towards pyrolysis oil yield. The experimental results showed that Ende natural zeolite contained a mixture of mordenite, clinoptilolite, and quartz. After activation and modification, there was an increase in the surface area from 53.17–104.67 m2/g. The average pore radius ranged from 19.96–34.21 Å. There was an increase in the pore volume from 22.01–72.34 cc/g. The total acidity changed from 1.456–5.342 NH3/g. The optimum catalyst concentration was 10% in the pyrolysis of 1000 grams of plastic waste catalyzed by 100 grams of H-zeolite. The oil yield decreased at 15% concentration. The 10% concentration worked best at 400 ℃.
Keywords
[1] C. Wang, Y. Liu, W.-Q. Chen, B. Zhu, S. Qu, and M. Xu, “Critical review of global plastics stock and flow data,” Journal of Industrial Ecology, vol. 25, no. 5, pp. 1300–1317, Oct. 2021, doi: 10.1111/jiec.13125.
[2] R. Karasik, N. E. Lauer, A. E. Baker, N. E Lisi, J. A. Somarelli, W. C. Eward, K. Fürst, and M. M. Dunphy-Daly, “Inequitable distribution of plastic benefits and burdens on economies and public health,” Frontiers in Marine Science, vol. 9, pp. 1–11, Jan. 2023, doi: 10.3389/ fmars.2022.1017247.
[3] J. J. Klemeš, Y. Van Fan, R. R. Tan, and P. Jiang, “Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19,” Renewable and Sustainable Energy Reviews, vol. 127, p. 109883, 2020, doi: 10.1016/j.rser.2020.109883.
[4] A. D. Sakti, A. N. Rinasti, E. Agustina, H. DIastomo, F. Muhammad, Z. Anna, and K. Wikantika, “Multi-scenario model of plastic waste accumulation potential in Indonesia using integrated remote sensing, statistic and socio-demographic data,” ISPRS International Journal of Geo-Information, vol. 10, no. 7, 2021, doi: 10.3390/ijgi10070481.
[5] N. L. Bhandari, G. Bhandari, S. Bista, B. Pokhrel, K. Bist, and K. N. Dhakal, “Degradation of fundamental polymers/plastics used in daily life: A review,” Bibechana, vol. 18, no. 1, pp. 240– 253, 2021, doi: 10.3126/bibechana.v18i1.29619.
[6] M. G. Kibria, N. I. Masuk, R. Safayet, H. Q. Nguyen, and M. Mourshed, “Plastic waste: Challenges and opportunities to mitigate pollution and effective management,” International Journal of Environmental Research, vol. 17, no. 1. 2023. doi: 10.1007/ s41742-023-00507-z.
[7] S. Huang, H. Wang, W. Ahmad, A. Ahmad, N. I. Vatin, A. M. Mohamed, A. F. Deifalla, and I. Mehmood, “Plastic waste management strategies and their environmental aspects: A scientometric analysis and comprehensive review,” International Journal of Environmental Research and Public Health, vol. 19, no. 8, 2022. doi: 10.3390/ijerph19084556.
[8] L. Traven and M. Široka, “Collection of recyclable waste in the city of Rijeka: Current status and perspectives, cleaner waste systems,” International Journal of Environmental Research and Public Health, vol. 5, 2023, Art. no. 100093, doi: 10.1016/j.clwas.2023.100093.
[9] I. Wojnowska-Baryła, K. Bernat, and M. Zaborowska, “Plastic waste degradation in landfill conditions: The problem with microplastics, and their direct and indirect environmental effects,” International Journal of Environmental Research and Public Health, vol. 19, no. 20, 2022, doi: 10.3390/ijerph192013223.
[10] C. A. Velis and E. Cook, “Mismanagement of plastic waste through open burning with emphasis on the global south: A systematic review of risks to occupational and public health,” Environmental Science and Technology, vol. 55, no. 11, pp. 7186–7207, 2021, doi: 10.1021/acs.est.0c08536.
[11] P. Stegmann, V. Daioglou, M. Londo, D. P. van Vuuren, and M. Junginger, “Plastic futures and their CO2 emissions,” Nature, vol. 612, no. 7939, pp. 272–276, 2022, doi: 10.1038/s41586-022- 05422-5.
[12] S. Armenise, W. SyieLuing, J. M. Ramírez- Velásques, F. Launay, D. Wuebben, N. Ngadi, J. Rams, and M. Muñoz, “Plastic waste recycling via pyrolysis: A bibliometric survey and literature review,” Journal of Analytical and Applied Pyrolysis, vol. 158, 2021, doi: 10.1016/j.jaap.2021.105265.
[13] V. L. Mangesh, S. Padmanabhan, P. Tamizhdurai, and A. Ramesh, “Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel,” Journal of Cleaner Production, vol. 246, 2020, Art. no. 119066, doi: 10.1016/j.jclepro. 2019.119066.
[14] F. Faisal, M. G. Rasul, M. I. Jahirul, and A. Ahmed, “Science of the total environment waste plastics pyrolytic oil is a source of diesel fuel: A recent review on diesel engine performance, emissions, and combustion characteristics,” Science of the Total Environment, vol. 886, no. 2022, 2023, Art. no. 163756, doi: 10.1016/j.scitotenv.2023.163756.
[15] S. Maithomklang, K. Wathakit, E. Sukjit, B. Sawatmongkhon, and J. Srisertpol, “Utilizing waste plastic bottle-based pyrolysis oil as an alternative fuel,” ACS Omega, vol. 7, no. 24, pp. 20542–20555, 2022, doi: 10.1021/ acsomega.1c07345.
[16] J. Liang, G. Shan, and Y. Sun, “Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts,” Renewable and Sustainable Energy Reviews, vol. 139, 2021, Art. no. 110707, doi: 10.1016/j.rser.2021.110707.
[17] R. Cai, X. Pei, H. Pan, H. Wan, H. Chen, Z. Huan, Z. Zhuo, and Y. Zhang, “Biomass catalytic pyrolysis over zeolite catalysts with an emphasis on porosity and acidity: A state-of-the-art review,” Energy & Fuels, vol. 34, no. 10, pp. 11771–11790, Oct. 2020, doi: 10.1021/acs.energyfuels.0c02147.
[18] M. Abbas-abadi, Y. Ureel, A. Eschenbacher, F. H. Vermeire, R. John, J. Oenema, G. D. Stefanidis, and K. M. Van Geem, “Challenges and opportunities of light olefin production via thermal and catalytic pyrolysis of end-of-life polyolefins: Towards full recyclability,” Progress in Energy and Combustion Science, vol. 96, 2023, Art. no. 101046, doi: 10.1016/j.pecs.2022.101046.
[19] H. Yuan, C. Li, R. Shan, J. Zhang, Y. Wu, and Y. Chen, “Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis,” Fuel Processing Technology, vol. 238, 2022, Art. no.107531, doi: 10.1016/j.fuproc. 2022.107531.
[20] A. Marcilla, D. Berenguer, and I. Martinez, “Effect of the addition of zeolites and silicate compounds on the composition of the smoke generated in the decomposition of Heet tobacco under inert and oxidative atmospheres,” Journal of Analytical and Applied Pyrolysis, vol. 164, 2022, Art. no. 105532, doi: 10.1016/j.jaap. 2022.105532.
[21] M. Król, “Natural vs. Synthetic Zeolites,” Crystals, vol. 10, no. 622, pp. 1–8, 2020, doi: 622; doi:10.3390/cryst10070622w.
[22] L. T. N. Maleiva, C. W. Purnomo, P. W. Nugraheni, E. Kusumawardhani, and L. S. A. Putra, “Zeolite effect on solid product characteristics in hydrothermal treatment of household waste,” ASEAN Journal of Chemical Engineering, vol. 23, no. 1, pp. 52–61, 2023, doi: 10.22146/ ajche.77544.
[23] D. D. Anggoro, I. Sumantri, and L. Buchori, “Indonesia’s natural zeolite as an adsorbent for toxic gases in shrimp ponds,” Journal of Ecological Engineering, vol. 22, no. 6, pp. 202– 208, 2021, doi: 10.12911/22998993/137921.
[24] Y. A. B. Neolaka, Y. Lawa, J. Naat, A. A. P. Riwu, A. W. Mango, H. Darmokoesoemo, B. A. Widyaningrum, M. Iqbal, H. S. Kusuma, “Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater,” Journal of Materials Research and Technology, vol. 18, pp. 2896–2909, 2022, doi: 10.1016/j.jmrt.2022.03.153.
[25] D. Lestariningsih and T. Kurniawan, “Transformation of Natural Zeolites by the Fusion-Hydrothermal Method for Ammonium Adsorption,” World Chemical Engineering Journal, vol. 7, no. 1, pp. 1–5, 2023.
[26] S. Narayanan, P. Tamizhdurai, V. L. Mangesh, C. Ragupathi, P. Santhana krishnan, and A. Ramesh, “Recent advances in the synthesis and applications of mordenite zeolite - review,” RSC Advances, vol. 11, no. 1, pp. 250–267, 2020, doi: 10.1039/d0ra09434j.
[27] G. A. Bani, “Pemanfaatan zeolit alam Ende sebagai katalis dalam pirolisis polietilena dari sampah plastik,” Rekayasa Bahan Alam dan Energi Berkelanjutan, vol. 07, no. 1, pp. 13–21, 2023.
[28] R. C. Ruiz-bastidas, G. Turnes, E. Palacio, and L. S. Cadavid-, “Natural Ecuadorian zeolite: An effective ammonia adsorbent to enhance methane production from swine waste,” Chemosphere, vol. 336, 2023, Art. no. 139098, doi: 10.1016/ j.chemosphere.2023.139098.
[29] A. N. An Naafi, R. T. Tjahjanto, and Y. P. Prananto, “Effect of NaOH concentration toward the characteristics of activated natural zeolite from blitar – east java,” Jurnal Kimia Sains dan Aplikasi, vol. 26, no. 2, pp. 50–56, 2023, doi: 10.14710/jksa.26.2.50-56.
[30] L. F. De Magalhães, G. R. Da Silva, and A. E. C. Peres, “Zeolite application in wastewater treatment,” Adsorption Science and Technology, vol. 2022, 2022, doi: 10.1155/2022/4544104.
[31] L. Velarde, M. Sadegh, E. Escalera, M. Antti, and F. Akhtar, “Adsorption of heavy metals on natural zeolites: A review,” Chemosphere, vol. 328, 2023, Art. no. 138508, doi: 10.1016/j.chemosphere.2023.138508.
[32] A. A. Vasconcelos, T. Len, A. de N. de Oliveira, A. A. F. da Costa, A. R. da Silva C. E. F da Costa, R. Luque, G. N. da Rocha Filho, R. C. R. Noronha L. A. S. do Nascimento, “Zeolites: a theoretical and practical approach with uses in (bio)chemical processes,” Applied Sciences (Switzerland), vol. 13, no. 3, 2023, doi: 10.3390/ app13031897.
[33] E. Kuldeyev, M. Seitzhanova, S. Tanirbergenova, K. Tazhu, E. Doszhanov, Z. Mansurov, S. Azat, R. Nurlybaev, R. Berndtsson, “Modifying natural zeolites to improve heavy metal adsorption,” Water, vol. 15, no. 12, p. 2215, 2023, doi: 10.3390/w15122215.
[34] J. Philia, W. Widayat, S. Sulardjaka, G. A. Nugroho, and A. N. Darydzaki, “Aluminum-based activation of natural zeolite for glycerol steam reforming,” Results in Engineering, vol. 19, 2023, Art. no. 101247, doi: 10.1016/j.rineng. 2023.101247.
[35] Suhartono, A. Romli, B. H. Prabowo, P. Kusumo, and Suharto, “Converting styrofoam waste into fuel using a sequential pyrolysis reactor and natural zeolite catalytic reformer,” International Journal of Technology, vol. 14, no. 1, pp. 185–194, 2023, doi: 10.14716/ijtech.v14i1.4907.
[36] H. Husin, M. Mahidin, M. Marwan, and F. Nasution, “Conversion of polypropylene-derived crude pyrolytic oils using hydrothermal autoclave reactor and Ni / aceh natural zeolite as catalysts,” Heliyon, vol. 9, no. 4, 2023, Art. no. e14880, doi: 10.1016/j.heliyon.2023.e14880.
[37] Nuryosuwito, S. Soeparman, W. Wijayanti, and N. Hamidi, “Natural zeolite study as a catalyst: A case study of pyrolysis of polyethene terephthalate (PET) waste into liquid fuel,” Journal of Physics: Conference Series, vol. 1517, n o . 1 , 2 0 2 0 , d o i : 1 0 . 1 0 8 8 / 1 7 4 2 - 6596/1517/1/012006.
[38] H. C. Genuino, M. Pilar Ruiz, H. J. Heeres, and S. R. A. Kersten, “Pyrolysis of mixed plastic waste: Predicting the product yields,” Waste Management, vol. 156, no. 2022, pp. 208–215, 2023, doi: 10.1016/j.wasman.2022.11.040.
[39] M. I. Jahirul, F. Faisal, M. G. Rasul, D. Schaller, M. M. K. Khan, and R. B. Dexter, “Automobile fuels (diesel and petrol) from plastic pyrolysis oil—Production and characterisation,” Energy Reports, vol. 8, pp. 730–735, 2022, doi: 10.1016/j.egyr.2022.10.218.
[40] M. M. Harussani, S. M. Sapuan, U. Rashid, A. Khalina, and R. A. Ilyas, “Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic,” Science of the Total Environment, vol. 803, p. 149911, 2022, doi: 10.1016/j.scitotenv.2021.149911.
[41] A. Irawan, T. Kurniawan, N. Nurkholifah, M. Melina, A. B. D. Nandiyanto, M. A. Firdaus, H. Alwan, Y. Bindar, “Pyrolysis of polyolefins into chemicals using low-cost natural zeolites,” Waste and Biomass Valorization, vol. 14, no. 5, pp. 1705–1719, 2023, doi: 10.1007/s12649-022- 01942-3.
[42] Ł. Kruszewski, V. Palchik, Y. Vapnik, K. Nowak, K. Banasik, and I. Galuskina, “Mineralogical, geochemical, and rock mechanic characteristics of zeolite‐bearing rocks of the hatrurim basin, israel,” Minerals, vol. 11, no. 10, 2021, doi: 10.3390/min11101062.
[43] S. Rojas-Buzo, P. Concepción, A. Corma, M. Moliner, and M. Boronat, “In-situ-generated active Hf-hydride in zeolites for the tandem N-alkylation of amines with benzyl alcohol,” ACS Catalysis, vol. 11, no. 13, pp. 8049–8061, Jul. 2021, doi: 10.1021/acscatal.1c01739.
[44] P. Tobarameekul, S. Sangsuradet, N. N. Chat, and P. Worathanakul, “Enhancement of CO2 adsorption containing zinc-ion-exchanged zeolite NaA synthesized from rice husk ash,” Applied Science and Engineering Progress, vol. 15, no. 1, pp. 1–11, 2022, doi: 10.14416/j.asep.2020.11.006.
[45] H. Afriansyah, M. R. Ramlan, M. Roulina T, Y. Bow, and Fatria, “Pyrolysis of lubricant waste into liquid fuel using zeolite catalyst,” International Journal of Research in Vocational Studies (IJRVOCAS), vol. 1, no. 4, pp. 26–31, 2022, doi: 10.53893/ijrvocas.v1i4.72.
[46] A. Santoso, I. B. S. Sumari, N. N. Safitri, A. R. Wijaya, and D. E. K. Putri, “Activation of zeolite from malang as catalyst for plastic waste conversion to fuel,” Key Engineering Materials, vol. 851, pp. 212–219, 2020, doi: 10.4028/www. scientific.net/KEM.851.212.
[47] K. T. Kumaran and I. Sharma, “Catalytic pyrolysis of plastic waste: A review,” 2020 Advances in Science and Engineering Technology International Conferences, ASET 2020, vol. 2, pp. 822–838, 2020, doi: 10.1109/ ASET48392.2020.9118286.
[48] O. Y. Yansaneh and S. H. Zein, “Latest advances in waste plastic pyrolytic catalysis,” Processes, vol. 10, no. 4, 2022, doi: 10.3390/pr10040683.
[49] O. A. Ogundele, A. Jimoh, and S. H. Paul, “Catalytic pyrolysis of polyethylene wastes into liquid fuel using ZSM-5 as catalyst,” International Journal of Scientific & Engineering Research, vol. 10, no. 3, pp. 699–704, 2019.
[50] L. S. Campbell, J. Charnock, A. Dyer, S. Hillier, S. Chenery, F. Stoppa, C. M. B. Henderson, R. Walcott, M. Rumsey, “Determination of zeolite-group mineral compositions by electron probe microanalysis,” Mineralogical Magazine, vol. 80, no. 5, pp. 781–807, 2016, doi: 10.1180/ minmag.2016.080.044.
[51] C. A. Ríos‐reyes, G. A. Reyes‐mendoza, J. A. Henao‐martínez, C. Williams, and A. Dyer, “First report on the geologic occurrence of natural na–a zeolite and associated minerals in cretaceous mudstones of the paja formation of vélez (Santander), colombia,” Crystals, vol. 11, no. 2, pp. 1–18, 2021, doi: 10.3390/cryst11020218.
[52] H. Zhang, I. bin Samsudin, S. Jaenicke, and G. K. Chuah, “Zeolites in catalysis: Sustainable synthesis and its impact on properties and applications,” Catalysis Science and Technology, vol. 12, no. 19, pp. 6024–6039, 2022, doi: 10.1039/ d2cy01325h.
[53] I. M. R. Fattah, H. C. Ong, T. M. I. Mahlia, M. Mofijur, A. S. Silitonga, S. M. A. Rahman, A. Ahmad, “State of the art of catalysts for biodiesel production,” Frontiers in Energy Research, vol. 851, pp. 1–17, 2020, doi: 10.3389/ fenrg.2020.00101.
[54] Y. Cheong, K. Wong, B. S. Ooi, T. C. Ling, and F. Khoerunnisa, “Behavior of K-MER zeolite and its morphological,” Crystals, vol. 10, no. 64, pp. 1–15, 2020.
[55] S. Sugiarti, D. D. Septian, H. Maigita, N. A. Khoerunnisa, S. Hasanah, T. Wukirsari, N. Hanif, and Y. B. Aprilliyanto, “Investigation of H-zeolite and metal-impregnated zeolites as transformation catalysts of glucose to hydroxymethylfurfural,” AIP Conference Proceedings, vol. 2243, no. 1, 2020.
[56] V. L. B. Fuss, G. Bruj, L. Dordai, M. Roman, O. Cadar, and A. Becze, “Evaluation of the impact of different natural zeolite treatments on the capacity of eliminating/reducing odors and toxic compounds,” Materials, vol. 14, no. 13, 2021, doi: 10.3390/ma14133724.
[57] L. Spina, E. Del Bello, T. Ricci, J. Taddeucci, and P. Scarlato, “Multi-parametric characterization of explosive activity at Batu Tara Volcano (Flores Sea, Indonesia),” Journal of Volcanology and Geothermal Research, vol. 413, 2021, Art. no. 107199, doi: 10.1016/j.jvolgeores. 2021.107199.
[58] O. Cadar, M. Senila, M. A. Hoaghia, D. Scurtu, I. Miu, and E. A. Levei, “Effects of thermal treatment on natural clinoptilolite-rich zeolite behavior in simulated biological fluids,” Molecules, vol. 25, no. 11, pp. 1–12, 2020, doi: 10.3390/molecules25112570.
[59] Z. Asgar Pour, Y. A. Alassmy, and K. O. Sebakhy, “A survey on zeolite synthesis and the crystallization process: Mechanism of nucleation and growth steps,” Crystals, vol. 13, no. 6, pp. 1–13, 2023, doi: 10.3390/cryst13060959.
[60] L. L. Díaz-Muñoz, H. E. Reynel-Ávila, D. I. Mendoza-Castillo, A. Bonilla-Petriciolet, and J. Jáuregui-Rincón, “Preparation and characterization of alkaline and acidic heterogeneous carbon-based catalysts and their application in vegetable oil transesterification to obtain biodiesel,” International Journal of Chemical Engineering, vol. 2022, 2022, doi: 10.1155/2022/7056220.
[61] Q. Zou, H. He, J. Xie, S. Han, W. Lin, A. K. Mondal, and F. Huang, “Study on the mechanism of acid modified H-Beta zeolite acidic sites on the catalytic pyrolysis of Kraft lignin,” Chemical Engineering Journal, vol. 462, 2023, Art. no. 142029, doi: 10.1016/j.cej.2023.142029.
[62] V. Yadav, M. Rani, L. Kumar, N. Singh, and E. Varathan, “Effect of surface modification of natural zeolite on ammonium ion removal from water using batch study: An overview,” Water, Air, & Soil Pollution, vol. 233, p. 465, Nov. 2022, doi: 10.1007/s11270-022-05948-4.
[63] P. Yan, I. N. Azreena, H. Peng, H. Rabiee, M. Ahmed, Y. Weng, Z. Zhu, E. M. Kennedy, and M. Stockenhuber, “Catalytic hydropyrolysis of biomass using natural zeolite-based catalysts,” Chemical Engineering Journal, vol. 476, 2023, Art. no. 146630, doi: 10.1016/ j.cej.2023.146630.
[64] V. Daligaux, R. Richard, and M. H. Manero, “Deactivation and regeneration of zeolite catalysts used in pyrolysis of plastic wastes—a process and analytical review,” Catalysts, vol. 11, no. 7, 2021, doi: 10.3390/catal11070770.
[65] S. Xu, J. Chen, H. Peng, S. Leng, H. Li, W. Qu, Y. Hu, Hailong Li, S. Jiang, W. Zhou, L. Leng, “Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar,” Fuel, vol. 291, 2021, Art. no. 120128, doi: 10.1016/j.fuel.2021.120128.
[66] Sunaryo, Sutoyo, Suyitno, Z. Arifin, T. Kivevele, and A. I. Petrov, “Characteristics of briquettes from plastic pyrolysis by-products,” Mechanical Engineering for Society and Industry, vol. 3, no. 2, pp. 57–65, 2023.
[67] S. H. Gebre, M. G. Sendeku, and M. Bahri, “Recent trends in the pyrolysis of non-degradable waste plastics,” ChemistryOpen, vol. 10, no. 12, pp. 1202–1226, Dec. 2021, doi: 10.1002/open. 202100184.
[68] W. Kaminsky, “Chemical recycling of plastics by fluidized bed pyrolysis,” Fuel Communications, vol. 8, no. July, p. 100023, 2021, doi: 10.1016/j. jfueco.2021.100023.
DOI: 10.14416/j.asep.2024.01.006
Refbacks
- There are currently no refbacks.