Page Header

Effects of Enzyme Treatment and Carrier Agents on Chemical and Physical Properties of Almond Protein-Based Product

Tho Y.G. Nguyen, Ha V. H. Nguyen

Abstract


There has been an emerging trend towards the research of plant-based proteins over the past few years; however, there has been limited conductive observation of plant-based proteins from almond by-products, as well as the potential of using Flavourzyme and different carrier agents to obtain an instant protein-based powder. The purpose of this study was to investigate the effects of Flavourzyme at various concentrations (0, 0.5, 1, 1.5, 2, and 2.5%) and incubation times (30, 60, 90, 120, and 180 min), as well as carrier agents at different ratios with a 20% total concentration on the physicochemical properties of almond protein-based products using freeze-drying (FD). The results showed a higher protein content (p-value ≤ 0.05) using 1.5% Flavourzyme for 120 min compared to the other levels. There was no significant difference (p-value > 0.05) in the protein retention rate after freeze-drying of the samples. However, the addition of Maltodextrin (MA), Gum Arabic (GA), and Inulin (IN) encapsulants improved the physical and functional characteristics of freeze-dried almond protein-based powder (FDAP). However, the solubility of the powder is moderate. Water-holding-capacity (WHC) and Oil- Holding Capacity (OHC) are inversely proportional, where GA-coated powder is the most hydrophobic (17.72 ± 0.87 mL oil/g) and IN-encapsulated powder is the most hydrophilic (15.00 ± 0.87 mL water/g). In conclusion, IN could be a potential encapsulant for almond protein-based powder, because powder produced from IN or MA: IN is acceptable in terms of physical parameters, and IN can also enhance fiber content in the final product.


Keywords



[1] P. Kundu, J. Dhankh ar, and A. Sharma, “Development of non dairy milk alternative using soymilk and almond milk,” Current Research in Nutrition and Food Science Journal, vol. 6, pp. 203–210, 2018.

 

[2] P. Martínez-Gómez, R. Sánchez-Pérez, F. Dicenta, W. Howad, P. Arús, and T. M. Gradziel, “Almond,” in Fruits and Nuts. Berlin, Germany: Springer, pp. 229–242, 2007.

 

[3] M. K. Papademetriou and E. M. Herath, “Integrated production practices of cashew in Asia,” RAP Publication (FAO), Bangkok, Thailand.

 

[4] M. L. M. Carratalá, C. García-López, V. Berenguer-Navarro, and N. Grané-Teruel, “New contribution to the chemometric characterization of almond cultivars on the basis of their fatty acid profiles,” Journal of Agricultural and Food Chemistry, vol. 46, pp. 963–967, 1998.

 

[5] C.-Y. Chen, P. E. Milbury, K. Lapsley, and J. B. Blumberg, “Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation,” The Journal of Nutrition, vol. 135, pp. 1366–1373, 2005.

 

[6] C.-Y. Chen, K. Lapsley, and J. Blumberg, “A nutrition and health perspective on almonds,” Journal of the Science of Food and Agriculture, vol. 86, no. 14, pp. 2245–2250, 2006.

 

[7] L. Esquius, R. Segura, G. R. Oviedo, M. Massip- Salcedo, and C. Javierre, “Effect of almond supplementation on non-esterified fatty acid values and exercise performance,” Nutrients, vol. 12, no. 3, p. 635, 2020.

 

[8] I. Prgomet, B. Gonçalves, R. Domínguez-Perles, R. Santos, M. J. Saavedra, A. Aires, N. Pascual- Seva, and A. Barros, “Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols,” Industrial Crops and Products, vol. 132, pp. 186–196, Jun. 2019, doi: 10.1016/j.indcrop.2019.02.024.

 

[9] C. E. Berryman, A. G. Preston, W. Karmally, R. J. Deckelbaum, and P. M. Kris-Etherton, “Effects of almond consumption on the reduction of LDL-cholesterol: A discussion of potential mechanisms and future research directions,” Nutrition Reviews, vol. 69, no. 4, pp. 171–185, 2011.

 

[10] G. A. Spiller, A. Miller, K. Olivera, J. Reynolds, B. Miller, S. J. Morse, A. Dewell, and J. W. Farquhar, “Effects of plant-based diets high in raw or roasted almonds, or roasted almond butter on serum lipoproteins in humans,” Journal of the American College of Nutrition, vol. 22, no. 3, pp. 195–200, 2003.

 

[11] R. T. Ahnen, S. S. Jonnalagadda, and J. L. Slavin, “Role of plant protein in nutrition, wellness, and health,” Nutrition Reviews, vol. 77, no. 11, pp. 735–747, 2019.

 

[12] N. E. Allen, P. N. Appleby, T. J. Key, H. B. Bueno‐de‐Mesquita, M. M. Ros, L. A. Kiemeney, and E. Riboli, “Macronutrient intake and risk of urothelial cell carcinoma in the European prospective investigation into cancer and nutrition,” International Journal of Cancer, vol. 132, no. 3, pp. 635–644, 2013.

 

[13] M. Merz, T. Eisele, P. Berends, D. Appel, S. Rabe, I. Blank, T. Stressler, and L. Fischer, “Flavourzyme, an enzyme preparation with industrial relevance: Automated nine-step purification and partial characterization of eight enzymes,” Journal of Agricultural and Food Chemistry, vol. 63, no. 23, pp. 5682–5693, 2015.

 

[14] R. J. S. de Castro and H. H. Sato, “Production and biochemical characterization of protease from Aspergillus oryzae: An evaluation of the physical– chemical parameters using agroindustrial wastes as supports,” Biocatalysis and Agricultural Biotechnology, vol. 3, no. 3, pp. 20–25, 2014.

 

[15] L. R. Fuentes, C. Richard, and L. Chen, “Sequential alcalase and flavourzyme treatment for preparation of α-amylase, α-glucosidase, and dipeptidyl peptidase (DPP)-IV inhibitory peptides from oat protein,” Journal of Functional Foods, vol. 87, p. 104829, 2021.

 

[16] T. L. Q. Anh, N. T. Q. Hoa, P. D. T. Nguyen, H. V. Thanh, P. B. Nguyen, L. T. H. Anh, and D. T. A. Dao, “Soybean protein extraction by alcalase and flavourzyme, combining thermal pretreatment for enteral feeding product,” Catalysts, vol. 10, no. 8, p. 829, 2020.

 

[17] B. Ozón, J. Cotabarren, T. Valicenti, M. G. Parisi, and W. D. Obregón, “Chia expeller: A promising source of antioxidant, antihypertensive and antithrombotic peptides produced by enzymatic hydrolysis with Alcalase and Flavourzyme,” Food Chemistry, vol. 380, 2022, Art. no. 132185.

 

[18] K. Sarabandi, P. Gharehbeglou, S. M. Jafari, and Z. Akbarbaglu, “Spray Drying Encapsulation of Proteins and Bioactive Peptides,” in Spray Drying Encapsulation of Bioactive Materials. Florida: CRC Press, pp. 241–270, 2021.

 

[19] A. G. A. Sá, Y. M. F. Moreno, and B. A. M. Carciofi, “Plant proteins as high-quality nutritional source for human diet,” Trends in Food Science & Technology, vol. 97, pp. 170–184, 2020.

 

[20] A. S. Mujumdar, Handbook of Industrial Drying. Florida: CRC press, 2006.

 

[21] S. Bhatta, T. S. Janezic, and C. Ratti, “Freeze-drying of plant-based foods,” Foods, vol. 9, no. 1, p. 87, 2020.

 

[22] L. Leistner, “Food preservation by combined methods,” Food Research International, vol. 25, no. 2, pp. 151–158, Jan. 1992, doi: 10.1016/0963- 9969(92)90158-2.

 

[23] K. G. H. Desai and H. J. Park, “Recent developments in microencapsulation of food ingredients,” Drying Technology, vol. 23, no. 7, pp. 1361–1394, Jul. 2005, doi: 10.1081/DRT- 200063478.

 

[24] M. A. Augustin and C. M. Oliver, “Use of milk proteins for encapsulation of food ingredients,” Microencapsulation in the Food Industry, pp. 211– 226, 2014, doi: 10.1016/B978-0-12-404568- 2.00019-4.

 

[25] A. A. Santana, L. G. P. Martin, R. A. de Oliveira, L. E. Kurozawa, and K. J. Park, “Spray drying of babassu coconut milk using different carrier agents,” Drying Technology, vol. 35, no. 1, pp. 76–87, 2017.

 

[26] C. Akal, “Chapter 28 - Benefits of whey proteins on human health,” in Dairy in Human Health and Disease Across the Lifespan, R. R. Watson, R. J. Collier, and V. R. Preedy, Eds. Massachusetts: Academic Press, pp. 363–372, 2017.

 

[27] S. Yang, X. Y. Mao, F. F. Li, D. Zhang, X. J. Leng, F. Z. Ren, and G. X. Teng, “The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate,” European Food Research and Technology, vol. 235, no. 1, pp. 91–97, 2012.

 

[28] A. O. Adetoro, U. L. Opara, and O. A. Fawole, “Effect of carrier agents on the physicochemical and technofunctional properties and antioxidant capacity of freeze-dried pomegranate juice (Punica granatum) powder,” Foods, vol. 9, no. 10, p. 1388, 2020.

 

[29] A. Michalska-Ciechanowska, A. Hendrysiak, J. Brzezowska, A. Wojdyło, and A. Gajewicz- Skretna, “How do the different types of carrier and drying techniques affect the changes in physico-chemical properties of powders from Chokeberry Pomace Extracts?,” Foods, vol. 10, no. 8, p. 1864, 2021.

 

[30] B. R. Bhandari, N. Datta, and T. Howes, “Problems associated with spray drying of sugar-rich foods,” Drying Technology, vol. 15, no. 2, pp. 671–684, 1997.

 

[31] M. I Ré, “Microencapsulation by spray drying,” Drying Technology, vol. 16, no. 6, pp. 1195–1236, Jan. 1998, doi: 10.1080/07373939808917460.

 

[32] C. C. Ferrari, S. P. Marconi Germer, I. D. Alvim, and J. M. de Aguirre, “Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic,” Drying Technology, vol. 31, no. 4, pp. 470–478, 2013.

 

[33] I. Gholamali and M. Yadollahi, “Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent,” International Journal of Biological Macromolecules, vol. 160, pp. 724– 735, 2020.

 

[34] H. Ş. Nadeem, M. Torun, and F. Özdemir, “Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers,” LWT-Food Science and Technology, vol. 44, no. 7, pp. 1626–1635, 2011.

 

[35] A. C. P. Souza, P. D. Gurak, and L. D. F. Marczak, “Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace,” Food and Bioproducts Processing, vol. 102, pp. 186–194, 2017.

 

[36] H. C. Carneiro, R. V. Tonon, C. R. Grosso, and M. D. Hubinger, “Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials,” Journal of Food Engineering, vol. 115, no. 4, pp. 443– 451, 2013.

 

[37] M. Apintanapong and A. Noomhorm, “The use of spray drying to microencapsulate 2‐acetyl‐1‐ pyrroline, a major flavour component of aromatic rice,” International Journal of Food Science & Technology, vol. 38, no. 2, pp. 95–102, 2003.

 

[38] J. Barbosa, S. Borges, M. Amorim, M. J. Pereira, A. Oliveira, M. E. Pintado, and P. Teixeira, “Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder,” Journal of Functional Foods, vol. 17, pp. 340–351, 2015.

 

[39] K. Samborska, S. Boostani, M. Geranpour, H. Hosseini, C. Dima, S. Khoshnoudi-Nia, H. Rostamabadi, S. R. Falsafi, R. Shaddel, S. Akbari-Alavijeh, and S. M. Jafari, “Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals,” Trends in Food Science & Technology, vol. 108, pp. 297–325, 2021.

 

[40] C. Saénz, S. Tapia, J. Chávez, and P. Robert, “Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica),” Food Chemistry, vol. 114, no. 2, pp. 616– 622, 2009.

 

[41] K. Sarabandi, A. S. Mahoonak, H. Hamishehkar, M. Ghorbani, and S. M. Jafari, “Protection of casein hydrolysates within nanoliposomes: Antioxidant and stability characterization,” Journal of Food Engineering, vol. 251, pp. 19– 28, 2019.

 

[42] L. E. Kurozawa, K. J. Park, and M. D. Hubinger, “Effect of maltodextrin and gum arabic on water sorption and glass transition temperature of spray dried chicken meat hydrolysate protein,” Journal of Food Engineering, vol. 91, no. 2, pp. 287–296, 2009.

 

[43] M. Azorín-Ortuño, C. Urbán, J. J. Cerón, F. Tecles, A. Allende, F. A. Tomás-Barberán, and J. C. Espín, “Effect of low inulin doses with different polymerisation degree on lipid metabolism, mineral absorption, and intestinal microbiota in rats with fat-supplemented diet,” Food Chemistry, vol. 113, no. 4, pp. 1058–1065, 2009.

 

[44] A. A. Gaafar and Z. A. Salama, “Phenolic compounds from artichoke (Cynara scolymus L.) by-products and their antimicrobial activities,” Journal of Biology, Agriculture and Healthcare, vol. 3, no. 12, pp. 1–6, 2013.

 

[45] R. Karimi, M. H. Azizi, M. Ghasemlou, and M. Vaziri, “Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review,” Carbohydrate Polymers, vol. 119, pp. 85–100, 2015.

 

[46] M. Warchol, S. Perrin, J.-P. Grill, and F. Schneider, “Characterization of a purified β‐fructofuranosidase from Bifidobacterium infantis ATCC 15697,” Letters in Applied Microbiology, vol. 35, no. 6, pp. 462–467, 2002.

 

[47] R. V. de B. Fernandes, S. V. Borges, D. A. Botrel, and C. R. de Oliveira, “Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein–inulin blends as carriers,” International Journal of Food Science & Technology, vol. 49, no. 6, pp. 1522–1529, 2014.

 

[48] X. Wang, Z. Ding, Y. Zhao, S. Prakash, W. Liu, J. Han, and Z. Wang, “Effects of lutein particle size in embedding emulsions on encapsulation efficiency, storage stability, and dissolution rate of microencapsules through spray drying,” LWT, vol. 146, 2021, Art. no. 111430.

 

[49] C. Pauck, D. de Beer, M. Aucamp, W. Liebenberg, N. Stieger, C. Human, and E. Joubert, “Inulin suitable as reduced-kilojoule carrier for production of microencapsulated spray-dried green Cyclopia subternata (honeybush) extract,” LWT, vol. 75, pp. 631–639, 2017.

 

[50] E. C. Q. Lacerda, V. M. de Araujo Calado, M. Monteiro, P. V. Finotelli, A. G. Torres, and D. Perrone, “Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles,” Carbohydrate Polymers, vol. 151, pp. 500–510, 2016.

 

[51] A. M. Islam, G. O. Phillips, A. Sljivo, M. J. Snowden, and P. A. Williams, “A review of recent developments on the regulatory, structural and functional aspects of gum arabic,” Food Hydrocolloids, vol. 11, no. 4, pp. 493–505, 1997.

 

[52] M. A. Montenegro, M. L. Boiero, L. Valle, and C. D. Borsarelli, “Gum arabic: More than an edible emulsifier,” Products and Applications of Biopolymers, vol. 51, pp. 953–978, 2012.

 

[53] C. Chranioti and C. Tzia, “Arabic gum mixtures as encapsulating agents of freeze-dried fennel oleoresin products,” Food and Bioprocess Technology, vol. 7, no. 4, pp. 1057–1065, 2014.

 

[54] M. R. I. Shishir, F. S. Taip, N. A. Aziz, and R. A. Talib, “Physical properties of spray-dried pink guava (Psidium guajava) powder,” Agriculture and Agricultural Science Procedia, vol. 2, pp. 74–81, 2014.

 

[55] S. F. Subtil, G. A. Rocha-Selmi, M. Thomazini, M. A. Trindade, F. M. Netto, and C. S. Favaro- Trindade, “Effect of spray drying on the sensory and physical properties of hydrolysed casein using gum arabic as the carrier,” Journal of Food Science and Technology, vol. 51, no. 9, pp. 2014–2021, 2014.

 

[56] A. A. Mahdi, J. K. Mohammed, W. Al-Ansi, A. D. Ghaleb, Q. A. Al-Maqtari, M. Ma, M. I. Admeh, and H. Wang, “Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying,” International Journal of Biological Macromolecules, vol. 152, pp. 1125–1134, 2020.

 

[57] P. S. Rao, R. K. Bajaj, B. Mann, S. Arora, and S. K. Tomar, “Encapsulation of antioxidant peptide enriched casein hydrolysate using maltodextrin– gum arabic blend,” Journal of Food Science and Technology, vol. 53, no. 10, pp. 3834–3843, 2016.

 

[58] J. Duangchuen, S. Pathaveerat, S. Noypitak, and P. Jermwongruttanachai, “Effect of spray drying air temperature to the changes of properties of skimmed coconut milk powder,” Applied Science and Engineering Progress, vol. 14, no. 2, pp. 187–195, Apr. 2020, doi: 10.14416/j. asep.2020.04.009.

 

[59] E. Karrar, A. A. Mahdi, S. Sheth, I. A. M. Ahmed, M. F. Manzoor, W. Wei, and X. Wang, “Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method,” International Journal of Biological Macromolecules, vol. 171, pp. 208–216, Feb. 2021, doi: 10.1016/j. ijbiomac.2020.12.045.

 

[60] S. Z. Bustamante, J. G. González, S. Sforza, and T. Tedeschi, “Bioactivity and peptide profile of whey protein hydrolysates obtained from Colombian double-cream cheese production and their products after gastrointestinal digestion,” LWT, vol. 145, Jun. 2021, Art. no. 111334, doi: 10.1016/j.lwt.2021.111334.

 

[61] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, Nov. 1951, doi: 10.1016/S0021-9258(19)52451-6.

 

[62] AOAC International, “Official Methods of Analysis (Volume 1),” AOAC, Rockville, Maryland, USA.

 

[63] H. Şahin-Nadeem, C. Dinçer, M. Torun, A. Topuz, and F. Özdemir, “Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying,” LWT-Food Science and Technology, vol. 52, no. 1, pp. 31–38, 2013.

 

[64] S. Bhat, C. S. Saini, V. Kumar, and H. K. Sharma, “Spray drying of bottle gourd juice: Effect of different carrier agents on physical, antioxidant capacity, reconstitution, and morphological properties,” ACS Food Science & Technology, vol. 1, no. 2, pp. 282–291, 2021.

 

[65] N. Jinapong, M. Suphantharika, and P. Jamnong, “Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration,” Journal of Food Engineering, vol. 84, no. 2, pp. 194–205, Jan. 2008, doi: 10.1016/j.jfoodeng.2007.04.032.

 

[66] M. Cano-Chauca, P. C. Stringheta, A. M. Ramos, and J. Cal-Vidal, “Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization,” Innovative Food Science & Emerging Technologies, vol. 6, no. 4, pp. 420–428, 2005.

 

[67] F. M. Diniz and A. M. Martin, “Use of response surface methodology to describe the combined effects of pH, temperature and E/S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle,” International Journal of Food Science & Technology, vol. 31, no. 5, pp. 419–426, 1996.

 

[68] F. Guérard, L. Dufosse, D. De La Broise, and A. Binet, “Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase,” Journal of molecular catalysis B: Enzymatic, vol. 11, no. 4–6, pp. 1051–1059, 2001.

 

[69] S. Ahrens, M. Venkatachalam, A. M. Mistry, K. Lapsley, and S. K. Sathe, “Almond (Prunus dulcis L.) protein quality,” Plant Foods for Human Nutrition, vol. 60, no. 3, pp. 123–128, 2005.

 

[70] P. Berends, D. Appel, T. Eisele, S. Rabe, and L. Fischer, “Performance of enzymatic wheat gluten hydrolysis in batch and continuous processes using Flavourzyme,” LWT - Food Science and Technology, vol. 58, no. 2, pp. 534–540, Oct. 2014, doi: 10.1016/j.lwt.2014.03.035.

 

[71] L. Giesler, D. Linke, S. Rabe, D. Appel, and R. G. Berger, “Hydrolysis of wheat gluten by combining peptidases of Flammulina velutipes and electrodialysis,” Journal of Agricultural and Food Chemistry, vol. 61, no. 36, pp. 8641–8649, Sep. 2013, doi: 10.1021/jf401716m.

 

[72] M. C. M. Moreno and V. F. Cuadrado, “Enzymic hydrolysis of vegetable proteins: Mechanism and kinetics,” Process Biochemistry, vol. 28, no. 7, pp. 481–490, Jan. 1993, doi: 10.1016/0032- 9592(93)85032-B.

 

[73] J. K. Chavan and J. Hejgaard, “Detection and partial characterisation of subtilisin inhibitors in legume seeds by isoelectric focusing,” Journal of the Science of Food and Agriculture, vol. 32, no. 9, pp. 857–62, Sep. 1981, doi: 10.1002/ jsfa.2740320903.

 

[74] B. H. Lee, Fundamentals of Food Biotechnology. New Jersey: John Wiley & Sons, 2014.

 

[75] F. Battista and D. Bolzonella, “Some critical aspects of the enzymatic hydrolysis at high dry‐matter content: A review,” Biofuels, Bioproducts and Biorefining, vol. 12, no. 4, pp. 711–723, 2018.

 

[76] H. C. Tran, H. A. T. Le, T. T. Le, and V. M. Phan, “Effects of enzyme types and extraction conditions on protein recovery and antioxidant properties of hydrolysed proteins derived from defatted lemna minor,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 360–369, May 2021, doi: 10.14416/j.asep.2021.05.003.

 

[77] F. Dourado, A. Barros, M. Mota, M. A. Coimbra, and F. M. Gama, “Anatomy and cell wall polysaccharides of almond (Prunus dulcis D. A. Webb) seeds,” Journal of Agricultural and Food Chemistry, vol. 52, no. 5, pp. 1364–1370, Mar. 2004, doi: 10.1021/jf030061r.

 

[78] J. D. Bewley and M. Black, Seeds: Physiology of Development and Germination. Berlin, Germany: Springer Science & Business Media, 2013.

 

[79] M. Araya-Farias, J. Makhlouf, and C. Ratti, “Drying of seabuckthorn (Hippophae rhamnoides L.) berry: Impact of dehydration methods on kinetics and quality,” Drying Technology, vol. 29, no. 3, pp. 351–359, Feb. 2011, doi: 10.1080/07373937.2010.497590.

 

[80] A. Liceaga and F. Hall, “Nutritional, functional and bioactive protein hydrolysates,” in Reference Module in Food Science. Amsterdam, Netherlands: Elsevier, 2018.

 

[81] S. S. Wijeratne, M. M. Abou-Zaid, and F. Shahidi, “Antioxidant polyphenols in almond and its coproducts,” Journal of Agricultural and Food Chemistry, vol. 54, no. 2, pp. 312–318, 2006.

 

[82] Ö. A. Gümüşay, A. A. Borazan, N. Ercal, and O. Demirkol, “Drying effects on the antioxidant properties of tomatoes and ginger,” Food Chemistry, vol. 173, pp. 156–162, Apr. 2015, doi: 10.1016/j.foodchem.2014.09.162.

 

[83] V. Kraujalytė, E. Pelvan, and C. Alasalvar, “Volatile compounds and sensory characteristics of various instant teas produced from black tea,” Food Chemistry, vol. 194, pp. 864–872, Mar. 2016, doi: 10.1016/j.foodchem.2015.08.051.

 

[84] V. M. Silva, L. E. Kurozawa, K. J. Park, and M. D. Hubinger, “Influence of carrier agents on the physicochemical properties of mussel protein hydrolysate powder,” Drying Technology, vol. 30, no. 6, pp. 653–663, May 2012, doi: 10.1080/07373937.2012.657727.

 

[85] M. Vera Zambrano, B. Dutta, D. G. Mercer, H. L. MacLean, and M. F. Touchie, “Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review,” Trends in Food Science & Technology, vol. 88, pp. 484–496, Jun. 2019, doi: 10.1016/j.tifs.2019.04.006.

 

[86] S. Rahman, “Handbook of food preservation,” in Food Science and Technology, 2nd ed. Boca Raton: CRC Press, 2007.

 

[87] J. Zhang, C. Zhang, X. Chen, and S. Y. Quek, “Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage,” Journal of Food Engineering, vol. 269, Mar. 2020, Art. no. 109744, doi: 10.1016/j.jfoodeng. 2019.109744.

 

[88] L. P. T. Quoc, “Effect of different carrier agents on physicochemical properties of spray-dried Pineapple (Ananas comosus Merr.) powder,” Journal of the Korean Chemical Society, vol. 64, no. 5, pp. 259–266, 2020.

 

[89] C. Zhang, S. L. A. Khoo, X. D. Chen, and S. Y. Quek, “Microencapsulation of fermented noni juice via micro-fluidic-jet spray drying: Evaluation of powder properties and functionalities,” Powder Technology, vol. 361, pp. 995–1005, Feb. 2020, doi: 10.1016/j.powtec.2019.10.098.

 

[90] T. T. A. Tran and H. V. H. Nguyen, “Effects of spray-drying temperatures and carriers on physical and antioxidant properties of lemongrass leaf extract powder,” Beverages, vol. 4, no. 4, p. 84, Nov. 2018, doi: 10.3390/beverages4040084.

 

[91] J. C. Rodríguez-Díaz, R. V. Tonon, and M. D. Hubinger, “Spray drying of blue shark skin protein hydrolysate: Physical, morphological, and antioxidant properties,” Drying Technology, vol. 32, no. 16, pp. 1986–1996, Dec. 2014, doi: 10.1080/07373937.2014.928726.

 

[92] Y.-J. Wang and L. Wang, “Structures and properties of commercial maltodextrins from corn, potato, and rice starches,” Starch/Stärke, vol. 52, no. 8–9, pp. 296–304, Sep. 2000.

 

[93] R. Pedroza-Islas, E. J. Vernon-Carter, C. Durán-Domı́nguez, and S. Trejo-Martı́nez, “Using biopolymer blends for shrimp feedstuff microencapsulation — I. Microcapsule particle size, morphology and microstructure,” Food Research International, vol. 32, no. 5, pp. 367–374, Jun. 1999, doi: 10.1016/S0963-9969(99)00099-X.

 

[94] L. H. Mosquera, G. Moraga, and N. Martínez- Navarrete, “Effect of maltodextrin on the stability of freeze-dried borojó (Borojoa patinoi Cuatrec.) powder,” Journal of Food Engineering, vol. 97, no. 1, pp. 72–78, Mar. 2010, doi: 10.1016/j. jfoodeng.2009.09.017.

 

[95] Y. Z. Cai and H. Corke, “Production and properties of spray-dried amaranthus betacyanin pigments,” Journal of Food Science, vol. 65, no. 7, pp. 1248– 1252, Oct. 2000, doi: 10.1111/j.1365-2621.2000. tb10273.x.

 

[96] S. Jaya and H. Das, “Effect of maltodextrin, glycerol monostearate and tricalcium phosphate on vacuum dried mango powder properties,” Journal of Food Engineering, vol. 63, no. 2, pp. 125–134, Jun. 2004, doi: 10.1016/S0260- 8774(03)00135-3.

 

[97] A. S. Akalın and D. Erişir, “Effects of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream,” Journal of Food Science, vol. 73, no. 4, pp. M184–M188, May 2008, doi: 10.1111/ j.1750-3841.2008.00728.x.

 

[98] C. Phelps, “The physical properties of inulin solutions,” Biochemical Journal, vol. 95, no. 1, pp. 41–47, Apr. 1965, doi: 10.1042/bj0950041.

 

[99] J.-M. Li and S.-P. Nie, “The functional and nutritional aspects of hydrocolloids in foods,” Food Hydrocolloids, vol. 53, pp. 46–61, Feb. 2016, doi: 10.1016/j.foodhyd.2015.01.035.

 

[100] S. C. Lourenço, M. Moldão-Martins, and V. D. Alves, “Microencapsulation of pineapple peel extract by spray drying using maltodextrin, inulin, and arabic gum as wall Matrices,” Foods, vol. 9, no. 6, p. 718, Jun. 2020, doi: 10.3390/foods9060718.

 

[101] R. V. Tonon, S. S. Freitas, and M. D. Hubinger, “Spray drying of açai (euterpe oleraceae mart.) juice: Effect of inlet air temperature and type of carrier agent: spray drying of açai juice,” Journal of Food Processing and Preservation, vol. 35, no. 5, pp. 691–700, Oct. 2011, doi: 10.1111/j.1745-4549.2011.00518.x.

 

[102] H. A. Al-Kahtani and B. H. Hassan, “Spray Drying of Roselle (Hibiscus sabdariffa L.) Extract,” Journal of Food Science, vol. 55, no. 4, pp. 1073–1076, Jul. 1990, doi: 10.1111/ j.1365-2621.1990.tb01601.x.

 

[103] T. T. George, A. B. Oyenihi, F. Rautenbach, and A. O. Obilana, “Characterization of moringa oleifera leaf powder extract encapsulated in maltodextrin and/or gum arabic coatings,” Foods, vol. 10, no. 12, Dec. 2021, Art. no 3044, doi: 10.3390/foods10123044.

 

[104] S. A. Mahdavi, S. M. Jafari, E. Assadpoor, and D. Dehnad, “Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin,” International Journal of Biological Macromolecules, vol. 85, pp. 379–385, Apr. 2016, doi: 10.1016/j.ijbiomac. 2016.01.011.

 

[105] G.-W. Oetjen and P. Haseley, Freeze-drying. New Jersey: John Wiley & Sons, 2004.

 

[106] M. K. Krokida and Z. B. Maroulis, “Effect of drying method on shrinkage and porosity,” Drying Technology, vol. 15, no. 10, pp. 2441– 2458, Nov. 1997, doi: 10.1080/073739397 08917369.

 

[107] M. Karel, K. Schaich, and R. B. Roy, “Interaction of peroxidizing methyl linoleate with some proteins and amino acids,” Journal of Agricultural and Food Chemistry, vol. 23, no. 2, pp. 159–163, Mar. 1975, doi: 10.1021/ jf60198a046.

 

[108] L. Pudziuvelyte, M. Marksa, K. Sosnowska, K. Winnicka, R. Morkuniene, and J. Bernatoniene, “Freeze-drying technique for microencapsulation of elsholtzia ciliata ethanolic extract using different coating materials,” Molecules, vol. 25, no. 9, May 2020, Art. no. 2237, doi: 10.3390/ molecules25092237.

 

[109] H. G. Kristinsson and B. A. Rasco, “Fish protein hydrolysates: Production, biochemical, and functional properties,” Critical Reviews in Food Science and Nutrition, vol. 40, no. 1, pp. 43–81, Jan. 2000, doi: 10.1080/ 10408690091189266.

 

[110] L. D. Daza, A. Fujita, C. S. Fávaro-Trindade, J. N. Rodrigues-Ract, D. Granato, and M. I. Genovese, “Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts,” Food and Bioproducts Processing, vol. 97, pp. 20–29, Jan. 2016, doi: 10.1016/j.fbp.2015.10.001.

 

[111] Y. Suhag, G. A. Nayik, I. K. Karabagias, and V. Nanda, “Development and characterization of a nutritionally rich spray-dried honey powder,” Foods, vol. 10, no. 1, p. 162, Jan. 2021, doi: 10.3390/foods10010162.

 

[112] H. T. T. Do and H. V. H. Nguyen, “Effects of spray-drying temperatures and ratios of gum arabic to microcrystalline cellulose on antioxidant and physical properties of mulberry juice powder,” Beverages, vol. 4, no. 4, p. 101, Dec. 2018, doi: 10.3390/beverages4040101.

 

[113] D. J. Mcclements, “Critical review of techniques and methodologies for characterization of emulsion stability,” Critical Reviews in Food Science and Nutrition, vol. 47, no. 7, pp. 611–649, Sep. 2007, doi: 10.1080/10408390701289292.

 

[114] A. K. Ghosh and P. Bandyopadhyay, “Polysac­charide-Protein interactions and their relevance in food colloids,” in The Complex World of Polysaccharides, D. N. Karunaratne, Ed. London, UK: InTech, 2012, doi: 10.5772/50561.

 

[115] F. Saura-Calixto, J. Serrano, and I. Goñi, “Intake and bioaccessibility of total polyphenols in a whole diet,” Food Chemistry, vol. 101, no. 2, pp. 492–501, 2007.

 

[116] M. Y. Eo, H. Fan, Y. J. Cho, S. M. Kim, and S. K. Lee, “Cellulose membrane as a biomaterial: From hydrolysis to depolymerization with electron beam,” Biomaterials Research, vol. 20, no. 1, p. 16, Dec. 2016, doi: 10.1186/s40824- 016-0065-3.

 

[117] H. Miyamoto, M. Umemura, T. Aoyagi, C. Yamane, K. Ueda, and K. Takahashi, “Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations,” Carbohydrate Research, vol. 344, no. 9, pp. 1085–1094, Jun. 2009, doi: 10.1016/j. carres.2009.03.014.

 

[118] B. Medronho, A. Romano, M. G. Miguel, L. Stigsson, and B. Lindman, “Rationalizing cellulose (in)solubility: Reviewing basic physicochemical aspects and role of hydrophobic interactions,” Cellulose, vol. 19, no. 3, pp. 581–587, Jun. 2012, doi: 10.1007/s10570-011-9644-6.

 

[119] J. P. Patel and P. H. Parsania, “Characterization, testing, and reinforcing materials of biodegradable composites,” in Biodegradable and Biocompatible Polymer Composites. Amsterdam, Netherlands: Elsevier, pp. 55–79, 2018. doi: 10.1016/B978- 0-08-100970-3.00003-1.

 

[120] C. T. Nthimole, T. Kaseke, and O. A. Fawole, “Micro-encapsulation and characterization of anthocyanin-rich raspberry juice powder for potential applications in the food industry,” Processes, vol. 10, no. 5, p. 1038, May 2022, doi: 10.3390/pr10051038.

 

[121] B. N.a, H. N.r.a, and S. N.m, “Effect of degree of hydrolysis (DH) on the functional properties and angiotensin I-converting enzyme (ACE) inhibitory activity of eel (Monopterus sp.) protein hydrolysate,” 2015. [Online]. Available: http://umt-ir.umt.edu.my:8080/jspui/handle/ 123456789/5801

Full Text: PDF

DOI: 10.14416/j.asep.2024.01.002

Refbacks

  • There are currently no refbacks.