Review on Advance Catalyst for Biomass Gasification
Abstract
The production of renewable energy from biomass waste is a recent innovative approach attracting significant attention. In this field, gasification technology has become an important method, enabling the transformation of biomass into bio-syngas for wide applications, such as electrical power, transportation fuel, cooking fuel, and chemicals. Bio-syngas containing hydrogen, carbon monoxide, carbon dioxide, and methane, are considered a clean and nontoxic fuel. To achieve an effective and efficient gasification process, capable of producing a fuel grade syngas, the use of the catalyst has been reported as the most practical approach. Although this concept is currently in development, it has captured the interest of numerous investigations. The current challenge is the development of a catalyst that can reduce tar, enhance H2 yield at a relatively low temperature, capture CO2, and maintain an extended active lifespan. Therefore, this research aimed to review the novel catalysts discussed in the latest literatures with the ability to produce the highest hydrogen product by using an effective process. The catalysts included natural minerals containing alkali metals, metals, carbon, and composites. Additionally, here also suggested the potential materials should be explored more intensively for gasification catalysts. This review would help to promote and accelerate the research and application of biomass gasification using local existing feedstock. Since the future of energy depended on renewable sources, producing syngas became one of the best options to support energy demand using biomass waste in Indonesia.
Keywords
[1] S. Verma, A. M. Dregulo, V. Kumar, P. C. Bhargava, N. Khan, A. Singh, X. Sun, R. Sindhu, P. Binod, Z. Zhang, A. Pandey, and M. K. Awasthi, “Reaction engineering during biomass gasification and conversion to energy,” Energy, vol. 266, p. 126458, Mar. 2023, doi: 10.1016/J.ENERGY. 2022.126458.
[2] P. K. Ghodke, A. K. Sharma, A. Jayaseelan, and K. P. Gopinath, “Hydrogen-rich syngas production from the lignocellulosic biomass by catalytic gasification: A state of art review on advance technologies, economic challenges, and future prospectus,” Fuel, vol. 342, Jun. 2023, doi: 10.1016/J.FUEL.2023.127800.
[3] J. Ren, J. P. Cao, X. Y. Zhao, F. L. Yang, and X. Y. Wei, “Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models,” Renewable and Sustainable Energy Reviews, vol. 116. Dec. 2019, doi: 10.1016/j.rser.2019.109426.
[4] E. Shayan, V. Zare, and I. Mirzaee, “Hydrogen production from biomass gasification; A theoretical comparison of using different gasification agents,” Energy Conversion and Management, vol. 159, pp. 30–41, Mar. 2018, doi: 10.1016/j.enconman. 2017.12.096.
[5] R. G. dos Santos and A. C. Alencar, “Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review,” International Journal of Hydrogen Energy, vol. 45, no. 36, pp. 18114–18132, Jul. 2020, doi: 10.1016/j.ijhydene.2019.07.133.
[6] Y. A. Situmorang, Z. Zhao, A. Yoshida, A. Abudula, and G. Guan, “Small-scale biomass gasification systems for power generation (<200 kW class): A review,” Renewable and Sustainable Energy Reviews, vol. 117, Jan. 2020, doi: 10.1016/j.rser.2019.109486.
[7] R. A. Arnold and J. M. Hill, “Catalysts for gasification: A review,” Sustainable Energy and Fuels, vol. 3, no. 3, pp. 656–672, 2019. doi: 10.1039/c8se00614h.
[8] A. A. Arpia, T. B. Nguyen, W. H. Chen, C. Di Dong, and Y. S. Ok, “Microwave-assisted gasification of biomass for sustainable and energy-efficient biohydrogen and biosyngas production: A state-of-the-art review,” Chemosphere, vol. 287, 2022. doi: 10.1016/ j.chemosphere.2021.132014.
[9] P. R. Havilah, A. K. Sharma, G. Govindasamy, L. Matsakas, and A. Patel, “Biomass gasification in downdraft gasifiers: A technical review on production, up-gradation and application of synthesis gas,” Energies (Basel), vol. 15, no. 11, pp. 1–19, 2022, doi: 10.3390/en15113938.
[10] P. Kaushal and R. Tyagi, “Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS,” Renew Energy, vol. 101, pp. 629–636, 2017, doi: 10.1016/j.renene. 2016.09.011.
[11] A. Suwatthikul, S. Limprachaya, P. Kittisupakorn, and I. M. Mujtaba, “Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition,” Energies (Basel), vol. 10, no. 3, pp. 1–15, 2017, doi: 10.3390/en10030314.
[12] J. K. Neathery, “Biomass gasification,” in Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals-Biomass Gasification, no. 1, M. Crocker, Ed., Lexington: Royal Society of Chemistry, 2010, pp. 106–129, doi: 10.1533/ 9780857097439.2.106.
[13] J. G. Speight, “Coal gasification processes for synthetic liquid fuel production,” in Gasification for Synthetic Fuel Production: Fundamentals, Processes and Applications. Amsterdam, Netherlands: Elsevier, pp. 201–220, 2015, doi: 10.1016/B978-0-85709-802-3.00009-6.
[14] R. Aniruddha, S. A. Singh, B. M. Reddy, and I. Sreedhar, “Sorption enhanced reforming: A potential route to produce pure H2 with in-situ carbon capture,” Fuel, vol. 351, Nov. 2023, doi: 10.1016/j.fuel.2023.128925.
[15] S. Señorans, J. R-Díaz, D. Escalante, L. A. González, and L. Díaz, “Ce/Pumice and Ni/ Pumice as heterogeneous catalysts for syngas production from biomass gasification,” Waste Management, vol. 166, pp. 270–279, Jul. 2023, doi: 10.1016/j.wasman.2023.05.017.
[16] P. Lahijani, Z. A. Zainal, A. R. Mohamed, and M. Mohammadi, “Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2 gasification reactivity of biomass char,” Bioresource Technology, vol. 132, pp. 351–355, 2013, doi: 10.1016/j.biortech.2012.10.092.
[17] A. Nzihou, B. Stanmore, and P. Sharrock, “A review of catalysts for the gasification of biomass char, with some reference to coal,” Energy, vol. 58, pp. 305–317, 2013 doi: 10.1016/ j.energy.2013.05.057.
[18] S. Meng, W. Li, Z. Li, and H. Song, “Recent progress of the transition metal-based catalysts in the catalytic biomass gasification: A mini-review,” Fuel, vol. 353, p. 129169, Dec. 2023, doi: 10.1016/J.FUEL.2023.129169.
[19] M. Cortazar, L. Santamaria, G. Lopez, J. Alvarez, L. Zhang, R. Wang, X. Bi, and M. Olazar, “A comprehensive review of primary strategies for tar removal in biomass gasification,” Energy Conversion and Management, vol. 276, Jan. 2023, doi: 10.1016/j.enconman.2022.116496.
[20] R. A. Aljeradat, S. H. Aljbour, and N. A. Jarrah, “Natural minerals as potential catalysts for the pyrolysis of date kernels: Effect of catalysts on products yield and bio-oil quality,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–9, Nov. 2021, doi: 10.1080/15567036.2021.2003485.
[21] X. Ma, X. Zhao, J. Gu, and J. Shi, “Co-gasification of coal and biomass blends using dolomite and olivine as catalysts,” Renew Energy, vol. 132, pp. 509–514, Mar. 2019, doi: 10.1016/j.renene. 2018.07.077.
[22] N. Aprianti, M. Faizal, M. Said, S. Nasir, M. Fatimura, R. Masriatini, I. Kurniawan, and A. Sefentry, “Catalytic gasification of fine coal waste using natural zeolite to produce syngas as fuel,” Journal of Ecological Engineering, vol. 24, no. 9, pp. 1–9, 2023, doi: 10.12911/2299 8993/167487.
[23] J. Waluyo, P. M. Ruya, D. Hantoko, J. Rizkiana, I. G. B. N. Makertihartha, M. Yan, and H. Susanto, “Utilization of modified zeolite as catalyst for steam gasification of palm kernel shell,” Bulletin of Chemical Reaction Engineering & Catalysis, vol. 16, no. 3, pp. 623–631, 2021, doi: 10.9767/ bcrec.16.3.10837.623-631.
[24] N. Aprianti, M. Faizal, M. Said, and S. Nasir, “Catalytic gasification of oil palm empty fruit bunch by using Indonesian bentonite as the catalyst,” Journal of Applied Engineering Science, vol. 19, no. 2, pp. 334–343, 2021, doi: 10.5937/jaes0-28781.
[25] B. Zhao, J. Wang, D. Zhu, G. Song, H. Yang, L. Chen, L. Sun, S. Yang, H. Guan, and X. Xie, “Adsorption characteristics of gas molecules (H2O, CO2, CO, CH4, and H2) on Cao-based catalysts during biomass thermal conversion with in situ CO2 capture,” Catalysts, vol. 9, no. 9, Sep. 2019, doi: 10.3390/catal9090757.
[26] H. Kim, D. C. Miller, S. Modekurti, B. Omell, D. Bhattacharyya, and S. E. Zitney, “Mathematical modeling of a moving bed reactor for post-combustion CO2 capture,” AIChE Journal, vol. 62, no. 11, pp. 3899–3914, Nov. 2016, doi: 10.1002/ AIC.15289.
[27] F. N. Rahma, C. Tamzysi, A. Hidayat, and M. A. Adnan, “Investigation of process parameters influence on municipal solid waste gasification with CO2 capture via process simulation approach,” International Journal of Renewable Energy Development, vol. 10, no. 1, pp. 1–10, Feb. 2021, doi: 10.14710/IJRED.2021.31982.
[28] T. Chandarin, S. Jadsadajerm, T. Ratana, S. Tungkamai, and M. Phongaksorn, “The study of MgO and/or ZrO2 modified Al2O3 for CO2 adsorption,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6236, doi: 10.14416/j.asep.2022.09.004.
[29] I. Zamboni, M. Debal, M. Matt, P. Girods, A. Kiennemann, Y. Rogaume, and C. Courson, “Catalytic gasification of biomass (Miscanthus) enhanced by CO2 sorption,” Environmental Science and Pollution Research, vol. 23, no. 22, pp. 22253–22266, Nov. 2016, doi: 10.1007/ s11356-016-6444-4.
[30] W. Lan, H. Ding, X. Jin, D. Yin, Y. Wang, and J. Ji, “Catalytic biomass gasification of sawdust: Integrated experiment investigation with process modeling and analysis,” International Journal of Low-Carbon Technologies, vol. 17, pp. 482–487, 2022, doi: 10.1093/ijlct/ctac022.
[31] V. S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M. Z. Memon, N. Shah, E. J. Anthony, and P. S. Fennell, “An overview of advances in biomass gasification,” Energy and Environmental Science, vol. 9, no. 10, pp. 2939–2977, Oct. 2016, doi: 10.1039/c6ee00935b.
[32] B. Li, C. F. M. Mbeugang, X. Xie, J. Wei, S. Zhang, L. Zhang, A. A. E. Samahy, D. Xu, Q. Wang, S. Zhang, and D. Liu, “Catalysis/ CO2 sorption enhanced pyrolysis-gasification of biomass for H2-rich gas production: Effects of activated carbon, NiO active component and calcined dolomite,” Fuel, vol. 334, p. 126842, Feb. 2023, doi: 10.1016/J.FUEL.2022.126842.
[33] Q. Xu, P. Lan, B. Zhang, Z. Ren, and Y. Yan, “Preparation of syngas via catalytic gasification of biomass with a nickel-based catalyst,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 35, no. 9, pp. 848–858, May 2013, doi: 10.1080/15567036.2010.535100.
[34] P. Tarifa, T. R. Reina, M. González-Castaño, and H. Arellano-García, “Catalytic upgrading of biomass-gasification mixtures using Ni-Fe/ MgAl2O4 as a bifunctional catalyst,” Energy and Fuels, vol. 36, no. 15, pp. 8267–8273, Aug. 2022, doi: 10.1021/acs.energyfuels.2c01452.
[35] H. Gul, M. Y. Arshad, and M. W. Tahir, “Production of H2 via sorption enhanced auto-thermal reforming for small scale Applications-A process modeling and machine learning study,” International Journal of Hydrogen Energy, Apr. 2023, doi: 10.1016/j.ijhydene.2022.12.217.
[36] A. U. Hasanat, A. H. Khoja, N. Naeem, A. Al-Anazi, R. Liaquat, B. A. Khan, and I. U. Din, “Thermocatalytic partial oxidation of methane to syngas (H2, CO) production using Ni/La2O3 modified biomass fly ash supported catalyst,” Results in Engineering, vol. 19, p. 101333, 2023, doi: 10.1016/j.rineng. 2023.101333.
[37] M. Irfan, A. Li, L. Zhang, G. Ji, and Y. Gao, “Catalytic gasification of wet municipal solid waste with HfO2 promoted Ni-CaO catalyst for H2-rich syngas production,” Fuel, vol. 286, Feb. 2021, doi: 10.1016/j.fuel.2020.119408.
[38] A. Çakan, B. Kiren, and N. Ayas, “Catalytic poppy seed gasification by lanthanum-doped cobalt supported on sepiolite,” International Journal of Hydrogen Energy, vol. 47, no. 45, pp. 19365–19380, May 2022, doi: 10.1016/ j.ijhydene.2022.02.073.
[39] K. Piyapaka, S. Tungkamani, and M. Phongaksorn, “Effect of strong metal support interactions of supported Ni and Ni-Co catalyst on metal dispersion and catalytic activity toward dry methane reforming reaction,” KMUTNB: Journal of Applied Science and Technology, Oct. 2016, doi: 10.14416/ j.ijast.2016.10.001.
[40] B. Khanchai, N. Rueangjitt, S. Chavadej, and H. Sekiguchi, “Hydrogen-rich syngas production from biogas reforming by gliding arc plasma-catalyst minireactor,” KMUTNB: Journal of Applied Science and Technology, vol. 10, no. 4, pp. 279–285, 2017, doi: 10.14416/j.ijast.2017. 11.002.
[41] S. Carrasco-Ruiz, Q. Zhang, J. Gándara-Loe, L. Pastor-Pérez, J.A. Odriozola, T. R. Reina, and L. F. Bobadilla, “H2-rich syngas production from biogas reforming: Overcoming coking and sintering using bimetallic Ni-based catalysts,” International Journal of Hydrogen Energy, vol. 48, no. 72, pp. 27907–27917, 2023, doi: 10.1016/j.ijhydene.2023.03.301.
[42] L. Oliveira, M. Pereira, A. P. Heitman, J. Filho, C. Oliveira, and M. Ziolek, “Niobium: The focus on catalytic application in the conversion of biomass and biomass derivatives,” Molecules, vol. 28, no. 4, Feb. 2023, doi: 10.3390/molecules 28041527.
[43] K. Razmgar, T. Shittu, I. Oluwoye, A. Khaleel, G. Senanayake, and M. Altarawneh, “Thermochemical activation of CO2 into syngas over ceria-supported niobium oxide catalyst: An integrated experimental-DFT study,” Journal of CO2 Utilization, vol. 67, Jan. 2023, doi: 10.1016/j.jcou.2022.102339.
[44] Q. Xia and Y. Wang, Niobium-Based Catalysts for Biomass Conversion, F.-S. Xiao and L. Wang, Eds. China: John Wiley & Sons Ltd., 2018.
[45] L. Zhou, Z. Yang, D. Wei, H. Zhang, and W. Lu, “Application of Fe based composite catalyst in biomass steam gasification to produce hydrogen rich gas,” Front Chem, vol. 10, Apr. 2022, doi: 10.3389/fchem.2022.882787.
[46] G. Ruoppolo and G. Landi, “Towards biomass gasification enhanced by structured iron-based catalysts,” Fuels, vol. 2, no. 4, pp. 546–555, Dec. 2021, doi: 10.3390/fuels2040032.
[47] B. Tian, S. Mao, F. Guo, J. Bai, R. Shu, L. Qian, and Q. Liu, “Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming,” Energy, vol. 242, p. 122970, Mar. 2022, doi: 10.1016/J.ENERGY.2021.122970.
[48] G. Yang, Q. Hu, J. Hu, H. Yang, S. Yan, Y. Chen, X. Wang, and H. Chen, “Hydrogen-rich syngas production from biomass gasification using biochar-based nanocatalysts,” Bioresource Technology, vol. 379, Jul. 2023, doi: 10.1016/ j.biortech.2023.129005.
[49] A. G. Ebadi, H. Hisoriev, M. Zarnegar, and H. Ahmadi, “Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds,” Environmental Technology (United Kingdom), vol. 40, no. 9, pp. 1178–1184, Apr. 2019, doi: 10.1080/0959 3330.2017.1417495.
[50] H. Sun, D. Feng, Y. Zhao, and S. Sun, “Regulation of partial oxidation in biochar-catalyzed tar reforming for hydrogen upgrading in syngas: The effect of oxygen concentration,” Fuel, vol. 341, Jun. 2023, doi: 10.1016/j.fuel.2023. 127671.
[51] L. Xu, K. Dong, F. Guo, S. Liu, Q. Qiao, S. Mao, L. Qian, and Y. Bai, “Synthesis of zeolite-based porous catalysts from coal gasification fine slag for steam reforming of toluene,” Energy, vol. 274, Jul. 2023, doi: 10.1016/j.energy.2023.127294.
[52] R. Ahmad, N. Hamidin, and U. F. M. Ali, “Effect of dolomite on pyrolysis of rice straw,” Advanced Materials Research, pp. 170–173, 2013. doi: 10.4028/www.scientific.net/AMR. 795.170.
[53] M. Shahbaz, S. yusup, A. Inayat, D. O. Patrick, and M. Ammar, “The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 468–476, Jun. 2017, doi: 10.1016/J.RSER.2017.01.153.
[54] Y. Tian, X. Zhou, S. Lin, X. Ji, J. Bai, and M. Xu, “Syngas production from air-steam gasification of biomass with natural catalysts,” Science of the Total Environment, vol. 645, pp. 518–523, Dec. 2018, doi: 10.1016/J.SCITOTENV.2018.07.071.
[55] C. Courson, L. Udron, D. Świerczyński, C. Petit, and A. Kiennemann, “Hydrogen production from biomass gasification on nickel catalysts: Tests for dry reforming of methane,” Catal Today, vol. 76, no. 1, pp. 75–86, Nov. 2002, doi: 10.1016/S0920-5861(02)00202-X.
[56] F. Fayaz, C. He, A. Goel, J. Rintala, and J. Konttinen, “Oxidative ethanol dry reforming for production of syngas over Co-based catalyst: Effect of reaction temperature,” Materials Today Communications, vol. 35, Jun. 2023, doi: 10.1016/j.mtcomm.2023.105671.
[57] S. Prabu and K. Y. Chiang, “Ni-based nanoparticle catalyst for enhancing hydrogen production in coffee residue gasification and applying carbon deposits catalyst in electrochemical energy storage,” Surfaces and Interfaces, vol. 38, p. 102859, Jun. 2023, doi: 10.1016/j.surfin. 2023.102859.
[58] M. A. Uddin, H. Tsuda, S. Wu, and E. Sasaoka, “Catalytic decomposition of biomass tars with iron oxide catalysts,” Fuel, vol. 87, no. 4–5, pp. 451–459, Apr. 2008, doi: 10.1016/ j.fuel.2007.06.021.
[59] S. Cheah, W. S. Jablonski, J. L. Olstad, D. L. Carpenter, K. D. Barthelemy, D. J. Robichaud, J. C. Andrews, S. K. Black, M. D. Oddo, and T. L. Westover, “Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition,” Green Chemistry, vol. 18, no. 23, pp. 6291–6304, 2016, doi: 10.1039/C6GC01661H.
[60] F. Pompeo, N. N. Nichio, O. A. Ferretti, and D. Resasco, “Study of Ni catalysts on different supports to obtain synthesis gas,” International Journal of Hydrogen Energy, vol. 30, no. 13–14, pp. 1399–1405, Oct. 2005, doi: 10.1016/j. ijhydene.2004.10.004.
[61] T. Nordgreen, T. Liliedahl, and K. Sjöström, “Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass,” Fuel, vol. 85, no. 5–6, pp. 689–694, Mar. 2006, doi: 10.1016/j.fuel.2005.08.026.
[62] S. Prabu and H. W. Wang, “Transition metal nanoparticles composite Al(OH)3 catalysts for hydrogen generation of Al/H2O system,” Journal of the Taiwan Institute of Chemical Engineers, Apr. 2023, doi: 10.1016/j.jtice.2023.104771.
[63] J. Hu, Z. Jia, S. Zhao, W. Wang, Q. Zhang, R. Liu, and Z. Huang, “Activated char supported Fe-Ni catalyst for syngas production from catalytic gasification of pine wood,” Bioresource Technology, vol. 340, Nov. 2021, doi: 10.1016/j. biortech.2021.125600.
[64] L. Dong, C. Wu, H. Ling, J. Shi, P. T. Williams, and J. Huang, “Development of Fe-promoted Ni-Al catalyst for hydrogen production from gasification of wood sawdust,” Energy Fuels, vol. 31, no. 3, pp. 2118–2127, Oct. 2016.
[65] O. Selcuk, B. S. Caglayan, and A. K. Avci, “Ni-catalyzed CO2 glycerol reforming to syngas: New insights on the evaluation of reaction and catalyst performance,” Journal of CO2 Utilization, vol. 67, Jan. 2023, doi: 10.1016/ j.jcou.2022.102329.
[66] D. Sutton, B. Kelleher, A. Doyle, and J. R. H. Ross, “Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products,” Bioresource Technology, vol. 80, no. 2, pp. 111–116, 2001, doi: 10.1016/ S0960-8524(01)00086-4.
[67] T. Nordgreen, V. Nemanova, K. Engvall, and K. Sjöström, “Iron-based materials as tar depletion catalysts in biomass gasification: Dependency on oxygen potential,” Fuel, vol. 95, pp. 71–78, May 2012, doi: 10.1016/j.fuel.2011.06.002.
[68] C. Phuhiran, T. Takarada, and S. Chaiklangmuang, “Hydrogen-rich gas from catalytic steam gasification of eucalyptus using nickel-loaded Thai brown coal char catalyst,” International Journal of Hydrogen Energy, vol. 39, no. 8, pp. 3649–3656, Mar. 2014, doi: 10.1016/ j.ijhydene.2013.12.155.
[69] L. Garcia, M. L. Salvador, J. Arauzo, and R. Bilbao, “CO2 as a gasifying agent for gas production from pine sawdust at low temperatures using a Ni/Al coprecipitated catalyst,” Fuel Processing Technology, vol. 69, no. 2, pp. 157–174, 2001, doi: 10.1016/S0378-3820(00)00138-7.
[70] D. Feng, J. Wang, S. Wang, S. Sun, Q. Shang, and Y. Zhao, “Effect of biochar support on the catalytic performance of Fe-based catalysts for CH4 cracking,” Fuel Processing Technology, vol. 247, Aug. 2023, doi: 10.1016/j.fuproc. 2023.107794.
[71] R. Tipo, C. Chaichana, R. Noda, andS. Chaiklangmuang, “Influence of coal treatments on the Ni loading mechanism of Ni-loaded lignite char catalysts,” RSC Adv, vol. 11, no. 56, pp. 35624–35643, Sep. 2021, doi: 10.1039/D1RA05046J.
[72] S. Meng, W. Li, Z. Li, and H. Song, “Recent progress of the transition metal-based catalysts in the catalytic biomass gasification: A mini-review,” Fuel, vol. 353, Dec. 2023, doi: 10.1016/ j.fuel.2023.129169.
[73] M. Cai, X. Bian, F. Xie, W. Wu, and P. Cen, “Preparation and performance of cerium-based catalysts for selective catalytic reduction of nitrogen oxides: A critical review,” Catalysts, vol. 11, no. 3, pp. 1–23, Mar. 2021, doi: 10.3390/ catal11030361.
[74] M. Führer, T. Van Haasterecht, and J. H. Bitter, “Molybdenum and tungsten carbides can shine too,” Catalysis Science and Technology, vol. 10, no. 18, pp. 6089–6097, Sep. 2020, doi: 10.1039/ d0cy01420f.
[75] P. Mei, J. Kim, N. A. Kumar, M. Pramanik, N. Kobayashi, Y. Sugahara, and Y. Yamauchi, “Phosphorus-based mesoporous materials for energy storage and conversion,” Joule, vol. 2, no. 11, pp. 2289–2306, Nov. 21, 2018. doi: 10.1016/ j.joule.2018.08.001.
[76] Y. Zhang and J. Zhou, “Synergistic catalysis by a hybrid nanostructure Pt catalyst for high-efficiency selective hydrogenation of nitroarenes,” Journal of Catalysis, vol. 395, pp. 445–456, 2021, doi: 10.1016/j.jcat.2021.01.025.
[77] S. H. Y. S. Abdullah, N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon, and A. Endut, “A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production,” Renewable and Sustainable Energy Reviews, vol. 70, pp. 1040– 1051, Apr. 2017, doi: 10.1016/j.rser.2016.12.008.
DOI: 10.14416/j.asep.2024.01.001
Refbacks
- There are currently no refbacks.