Page Header

Combustion Assisted Synthesis of CuO Nanoparticles and Structure-Property Evaluation in nano-CuO Polymer Composites

Gopinath Prasanth, Gattumane Motappa Madhu, Nagaraju Kottam

Abstract


Metal oxide-based nanoparticle as a filler in epoxy polymer composites has diverse applications in various industries, including adhesives, automobiles, aerospace, wind energy, and civil engineering. However, these composites must fulfill essential properties encompassing chemical, curing, optical, and thermal attributes. This study focuses on enhancing epoxy polymer by integrating copper oxide (CuO) nanoparticles synthesized through solution combustion. Varied CuO loadings (0.5–2.5 wt.%) were impregnated into the epoxy, critically impacting the structural attributes of the resulting nano-CuO polymer composites. Various material characterization techniques were employed to study the synthesized materials' morphology, elemental composition, phase formation, identification of the presence of functional groups, thermal stability, and optical properties. SEM images show the presence of spherical particles with porous structures. EDX confirmed the presence of Cu and O elements, while the XRD pattern showed the formation of CuO with an average crystallite size of 46 nm. FTIR confirms the presence of O-H, C-H, and C=C functional groups. TGA showed thermal stability and revealed minimal mass loss below 250 °C for nano-CuO polymer composites and minimal mass loss occurred for CuO nanoparticles at 900 °C. Photoluminescence exhibited redshifted luminescence spectra. The study suggests improved qualities due to CuO nanoparticle integration into epoxy. CuO loading crucially influences nano-CuO polymer composite properties, rendering them ideal for high-temperature applications, supported by remarkable thermal stability evidenced by substantial residual mass in TGA.

Keywords



[1] I. O. Oladele, T. F. Omotosho, G. S. Ogunwande, and F. A. Owa, “A review on the philosophies for the advancement of polymer-based composites: Past, present and future perspective,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 553–579, Oct.–Dec. 2021, doi: 10.14416/j.asep. 2021.08.003.

 

[2] A. D. Printz and D. J. Lipomi, “Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics,” Applied Physics Reviews, vol. 3, no. 2, Jun. 2016, Art. no. 021302, doi: 10.1063/1.4947428.

 

[3] A. Hamisu, U. I. Gaya, and A. H. Abdullah, “Bi-template assisted sol-gel synthesis of photocatalytically-active mesoporous anatase TiO2 nanoparticles,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 313–327, 2021, doi: 10.14416/j.asep.2021.04.003.

 

[4] J. K. Rao, A. Raizada, D. Ganguly, M. Mankad, S. Satayanarayana, and G. M. Madhu, “Investigation of structural and electrical properties of novel CuO–PVA nanocomposite films,” Journal of Materials Science, vol. 50, no. 21, 2015, doi: 10.1007/s10853-015-9261-0.

 

[5] B. D. S. Deeraj, K. Joseph, J. S. Jayan, and A. Saritha, “Dynamic mechanical performance of natural fiber reinforced composites: A brief review,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 614–623, 2021, doi: 10.14416/ j.asep.2021.06.003.

 

[6] W. Zhao, Y. Jiao, J. Li, L. Wu, A. Xie, and W. Dong, “One-pot synthesis of conjugated microporous polymers loaded with superfine nano-palladium and their micropore-confinement effect on heterogeneously catalytic reduction,” Journal of Catalysis, vol. 378, pp. 42–50, 2019, doi: 10.1016/j.jcat.2019.07.056.

 

[7] G. D. Mogosanu, and A. M. Grumezescu, “Natural and synthetic polymers for wounds and burns dressing,” International Journal of Pharmaceutics, vol. 463, no. 2, pp. 127–136, 2014, doi: 10.1016/j.ijpharm.2013.12.015.

 

[8] A. Rita, A. Sivakumar, and S. A. M. B. Dhas, “Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications,” Journal of Nanostructure in Chemistry, vol. 9, pp. 225–230, 2019, doi: 10.1007/s40097-019-00313-0.

 

[9] C. Srikanth and G. M. Madhu, “Synthesis, characterization and properties evaluation of ZrO2 and its composites–A review,” in International Conference on Advances in Thermal Systems, Materials and Design Engineering (ATSMDE2017), 2017, doi: 10.2139/ssrn.3101419.

 

[10] M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: Processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 689–718, 2021, doi: 10.14416/ j.asep.2021.09.005.

 

[11] A. S. Mukasyan, P. Epstein, and P. Dinka, “Solution combustion synthesis of nanomaterials,” Proceedings of the Combustion Institute, vol. 31, no. 2, pp. 1789–1795, 2007, doi: 10.1016/j.proci. 2006.07.052.

 

[12] E. Novitskaya, J. P. Kelly, S. Bhaduri, and O. A. Graeve, “A review of solution combustion synthesis: An analysis of parameters controlling powder characteristics,” International Materials Reviews, vol. 66, no. 3, pp. 188–214, 2020, doi: 10.1080/09506608.2020.1765603.

 

[13] T. P. Ye, S. F. Liao, Y. Zhang, M. J. Chen, Y. Xiao, X. Y. Liu, and D. Y Wang, “Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins,” Composites Part B: Engineering, vol. 175, 2019, Art. no. 107189, doi: 10.1016/j.compositesb.2019.107189.

 

[14] C. Zhang, R. Huang, Y. Wang, Z. Wu, S. Guo, H. Zhang, and L. Li, “Aminopropyltrimethoxysilane-functionalized boron nitride nanotube based epoxy nanocomposites with simultaneous high thermal conductivity and excellent electrical insulation,” Journal of Materials Chemistry A, vol. 6, no. 42, pp. 20663–20668, 2018, doi: 10.1039/C8TA07435F.

 

[15] A. G. Niculescu, C. Chircov, A. C. Bîrcă, and A. M. Grumezescu, “Nanomaterials synthesis through microfluidic methods: An updated overview,” Nanomaterials, vol. 11, no. 4, 2021, Art. no. 864, doi: 10.3390/nano11040864.

 

[16] O. Zabihi, M. Ahmadi, T. Abdollahi, S. Nikafshar, and M. Naebe, “Collision-induced activation: Towards industrially scalable approach to graphite nanoplatelets functionalization for superior polymer nanocomposites,” Scientific Reports, vol. 7, no. 1, 2017, Art. no. 3560, doi: 10.1038/ s41598-017-03890-8.

 

[17] S. J. Kashyap, R. Sankannavar, and G. M. Madhu, “Insights on the various structural, optical and dielectric characteristics of La1-xCaxFeO3 perovskite-type oxides synthesized through solution-combustion technique,” Applied Physics A, vol. 128, no. 6, Jun. 2022, doi: 10.1007/s00339-022-05628-4.

 

[18] B. Shaabani, E. Alizadeh-Gheshlaghi, Y. Azizian- Kalandaragh, and A. Khodayari, “Preparation of CuO nanopowders and their catalytic activity in photodegradation of Rhodamine-B,” Advanced Powder Technology, vol. 25, no. 3, pp. 1043– 1052, 2014, doi: 10.1016/j.apt.2014.02.005.

 

[19] A. M. Kumar, A. Khan, R. Suleiman, M. Qamar, S. Saravanan, and H. Dafalla, “Bifunctional CuO/ TiO2 nanocomposite as nanofiller for improved corrosion resistance and antibacterial protection,” Progress in Organic Coatings, vol. 114, pp. 9–18, Jan. 2018, doi: 10.1016/j.porgcoat.2017.09.013.

 

[20] M. Puttegowda, H. Pulikkalparambil, and S. M. Rangappa, “Trends and developments in natural fiber composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 543– 552, 2021, doi: 10.14416/j.asep.2021.06.006.

 

[21] A. Dhandapani, S. Krishnasamy, T. Ungtrakul, S. M. K. Thiagamani, R. Nagarajan, C. Muthukumar, and G. Chinnachamy, “Desirability of tribo-performance of natural based thermoset and thermoplastic composites: A concise review,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 606–613, 2021, doi: 10.14416/ j.asep.2021.07.001.

 

[22] K. Setswalo, N. Molaletsa, O. P. Oladijo, E. T. Akinlabi, S. M. Rangappa, and S. Siengchin, “The influence of fiber processing and alkaline treatment on the properties of natural fiber-reinforced composites: A review,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 632–650, Oct.–Dec. 2021, doi: 10.14416/j. asep.2021.08.005.

 

[23] C. Santos, T. Santos, K. Moreira, M. Aquino, and R. F. L. Zillio, “Statistical studyof the influence of fiber content, fiber length and critical length in the mechanical behavior of polymeric composites reinforced with Carica Papaya Fibers (CPFs),” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 719–726, 2021, doi: 10.14416/ j.asep.2021.07.002.

 

[24] J. Njuguna and K. Pielichowski, “Polymer nanocomposites for aerospace applications: Properties,” Advanced Engineering Materials, vol. 5, no. 11, pp. 769–778, 2003, doi: 10.1002/ adem.200310101.

 

[25] J. Njuguna and K. Pielichowski, “Polymer nanocomposites for aerospace applications: Characterization,” Advanced Engineering Materials, vol. 6, no. 4, pp. 204–210, 2004, doi: 10.1002/adem.200305110.

 

[26] V. T. Rathod, J. S. Kumar, and A. Jain, “Polymer and ceramic nanocomposites for aerospace applications,” Applied Nanoscience, vol. 7, no. 8, pp. 519–548, 2017, doi: 10.1007/s13204-017- 0592-9.

 

[27] M. S. Alam and M. A. Chowdhury, “Characterization of epoxy composites reinforced with CaCO3-Al2O3-MgO-TiO2/CuO filler materials,” Alexandria Engineering Journal, vol. 59, no. 6, pp. 4121–4137, 2020, doi: 10.1016/ j.aej.2020.07.017.

 

[28] M. Asim, M. T. Paridah, M. Chandrasekar, R. M Shahroze, M. Jawaid, M. Nasir, and R. Siakeng, “Thermal stability of natural fibers and their polymer composites,” Iranian Polymer Journal, vol. 29, no. 7, pp. 625–648, 2020, doi: 10.1007/ s13726-020-00824-6.

 

[29] S. Kharbanda, T. Bhadury, G. Gupta, D. Fuloria, P. R. Pati, V. K. Mishra, and A. Sharma, “Polymer composites for thermal applications – A review,” Materials Today: Proceedings, vol. 47, pp. 2839– 2845, 2021, doi: 10.1016/j.matpr.2021.03.609.

 

[30] Z. Barani, A. Mohammadzadeh, A. Geremew, C. Huang, D. Coleman, L. Mangolini, and A. A. Balandin, “Thermal properties of the binary‐filler hybrid composites with graphene and copper nanoparticles,” Advanced Functional Materials, vol. 30, no. 8, 2019, Art. no. 1904008, doi: 10.1002/adfm.201904008.

 

[31] M. A. V. Anand, K. Saravanakumar, S. Anbazhagan, K. Venkatachalam, and M. H. Wang, “Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy,” International Journal of Biological Macromolecules, vol. 164, pp. 2073–2084, 2020, doi:10.1016/j.ijbiomac. 2020.08.03.

 

[32] B. Ashok, M. Umamahesh, N. Hariram, S. Siengchin, and A. V. Rajulu, “Modification of waste leather trimming with in situ generated silver nanoparticles by one step method,” Applied Science and Engineering Progress, vol. 14, no. 2, pp. 236–246, 2021, doi: 10.14416/j.asep. 2021.01.007.

 

[33] S. J. Kashyap, R. Sankannavar, and G. M. Madhu, “Hydroxyapatite nanoparticles synthesized with a wide range of Ca/P molar ratios and their structural, optical, and dielectric characterization,” Journal of the Korean Ceramic Society, vol. 59, pp. 846– 858, 2022, doi: 10.1007/s43207-022-00225-w.

 

[34] F. Gortner, L. Medina, and P. Mitschang, “Influence of Textile Reinforcement on Bending Properties and Impact Strength of SMC-components,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 4, pp. 259–269, 2015, doi: 10.14416/j.ijast. 2015.07.005.

 

[35] V. Tulatorn, S. Ouajai, R. Yeetsorn, and N. Chanunpanich, “Mechanical behavior investigation of UHMWPE composites for pile cushion applications,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 4, pp. 271–282, 2015, doi: 10.14416/j.ijast. 2015.08.001.

 

[36] A. Boontum, J. Phetsom, W. Rodiahwati, K. Kitsubthawee, and T. Kuntothom, “Characterization of diluted-acid pretreatment of water hyacinth,” Applied Science and Engineering Progress, vol. 12, no. 4, pp. 253–263, Oct.–Dec. 2019, doi: 10.14416/j.asep.2019.09.003.

 

[37] C. Srikanth, and G. M. Madhu, “Effect of ZTA concentration on structural, thermal, mechanical and dielectric behavior of novel ZTA–PVA nanocomposite films,” SN Applied Sciences, vol. 2, no. 3, 2020, doi:10.1007/s42452-020-2232-3.

 

[38] A. Kumar, E. E. Wolf, and A. S. Mukasyan, “Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys,” AIChE Journal, vol. 57, no. 12, pp. 3473–3479. 2011, doi:10.1002/aic.12537.

 

[39] W. Jansomboon, P. Brikshasri, S. Sarawutanukul, and P. Prapainainar, “Characterization of graphene synthesized by modified hummers and liquid-phase exfoliation method,” Applied Science and Engineering Progress, vol. 12, no. 1, pp. 14–19, 2019, doi: 10.14416/j.ijast.2018.10.009.

 

[40] C. Srikanth and G. M. Madhu, “Effect of nano CdO-ZnO content on structural, thermal, optical, mechanical and electrical properties of epoxy composites,” Journal of Metals, Materials, and Minerals, vol. 33, no. 2, pp. 38–52, Jun. 2023. doi: 10.55713/jmmm.v33i2.1590.

 

[41] M. Thanasiriruk, P. Saychoo, C. Khajonvittayakul, V. Tongnan, U. W. Hartley, and N. Laosiripojana, “Optimizing operating conditions for Oxidative Coupling Methane (OCM) in the presence of NaCl- MnOx/SiO2,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 477–488, 2021, doi: 10.14416/j.asep.2020.10.001.

 

[42] S. J. Kashyap, R. Sankannavar, and G.M. Madhu, “Synthesis and characterization of La(Ce, Ba) NiO3 perovskite-type oxides,” Journal of Superconductivity and Novel Magnetism, vol. 35, no. 7, pp. 2107–2118, 2022, doi: 10.1007/s10948- 022-06219-3.

 

[43] J. S. Sagar, G. M. Madhu, J. Koteswararao, and P. Dixit, “Studies on thermal and mechanical behavior of nano TiO2 - epoxy polymer composite,” Communications in Science and Technology, vol. 7, no. 1, pp. 38–44, 2022, doi: 10.21924/ cst.7.1.2022.667.

 

[44] J. Y. Lambongang and P. Suwanpinij, “Materials characterization techniques for the analyses of components of port fuel injectors,” Applied Science and Engineering Progress, vol. 13, no. 1, pp. 48–55, 2020, doi: 10.14416/j.ijast.2018.11.008.

 

[45] S. Thanomchat, K. Srikulkit, B.Suksut, and A.K. Schlarb, “Morphology and crystallization of polypropylene/microfibrillated cellulose composites,” Applied Science and Engineering Progress, vol. 7, no. 4, pp. 23–34, 2014, doi: 10.14416/j.ijast.2014.09.002.

 

[46] N. Salahudeen, “Metakaolinization effect on the thermal and physiochemical propperties of Kankara kaolin,” KMUTNB International Journal of Applied Science and Technology, vol. 11, no. 2, pp. 127–135, 2018, doi: 10.14416/ j.ijast.2018.04.003.

 

[47] S. Chotisuwan, K. Wannarit, P. Kaewna, S. Kardae, Y. Chaisuksan, and J. Roumcharoen, “Fire-retardant paper based on montmorillonite and oil palm trunk fibres,” Applied Science and Engineering Progress, vol. 12, no. 4, pp. 277–285, 2019, doi: 10.14416/j.ijast.2018.11.002.

 

[48] S. J. Kashyap, R. Sankannavar, and G. M. Madhu, “Iron oxide (Fe2O3) synthesized via solution-combustion technique with varying fuel-to-oxidizer ratio: FT-IR, XRD, optical and dielectric characterization,” Materials Chemistry and Physics, vol. 286, 2022, Art. no. 126118, doi: 10.1016/j.matchemphys.2022.126118.

 

[49] J. Foungchuen, N. Pairin, and C. Phalakornkule, “Impregnation of chitosan onto activated carbon for adsorption selectivity towards CO2: Biohydrogen purification,” KMUTNB International Journal of Applied Science and Technology, vol. 9, no. 3, pp. 197–209, 2016, doi: 10.14416/j.ijast.2016.03.003.

 

[50] C. Srikanth, G. M. Madhu, and S. J. Kashyap, “Enhanced structural, thermal, mechanical and electrical properties of nano ZTA/epoxy composites,” AIMS Materials Science, vol. 9, no. 2, pp. 214–235, 2022, doi: 10.3934/matersci. 2022013.

 

[51] N. Kottam and S. P. Smrithi, “Luminescent carbon nanodots: Current prospects on synthesis, properties and sensing applications,” Methods and Applications in Fluorescence, vol. 9, no. 1, Jan. 2021, Art. no. 012001, doi: 10.1088/2050-6120/abc008.

 

[52] R. Gopalakrishnan and M. Ashokkumar, “Rare earth metals (Ce and Nd) induced modifications on structural, morphological, and photoluminescence properties of CuO nanoparticles and antibacterial application,” Journal of Molecular Structure, vol. 1244, 2021, Art. no. 131207, doi: 10.1016/j.molstruc. 2021.13120.

 

[53] O. Oladele, T. F. Omotosho, G. S. Ogunwande, and F. A. Owa, “A review on the philosophies for the advancement of polymer-based composites: Past, present and future perspective,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 553–579, 2021, doi: 10.14416/ j.asep.2021.08.00.

 

[54] F. Gortner, L. Medina, and P. Mitschang, “Influence of textile reinforcement on bending properties and impact strength of SMC-components,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 4, pp. 259– 269, 2015, doi: 10.14416/j.ijast.2015.07.005.

 

[55] K. Jayappa, V. Kumar, and G. G. Purushotham, “Effect of reinforcements on mechanical properties of nickel alloy hybrid metal matrix composites processed by sand mold technique,” Applied Science and Engineering Progress, vol. 14, no. 1, pp. 44–51, 2021, doi: 10.14416/j.asep.2020.11.001.

 

[56] S. Thipperudrappa, A. Hiremath, and B. K. Nagaraj, “Synergistic effect of ZnO and TiO2 nanoparticles on the thermal stability and mechanical properties of glass fiber‐reinforced LY556 epoxy composites,” Polymer Composites, vol. 42, no. 9, pp. 4831– 4844, 2021, doi: 10.1002/pc.26193.

 

[57] W. H. Kan and L. Chang. “The mechanisms behind the tribological behaviour of polymer matrix composites reinforced with TiO2 nanoparticles,” Wear, vol. 474–475, 2021, doi:10.1016/j.wear.2021.203754.

 

[58] A. Sadooghi and S. J. Hashemi, “Investigating the influence of ZnO, CuO, Al2O3 reinforcing nanoparticles on strength and wearing properties of Aluminum matrix nanocomposites produced by powder metallurgy process,” Materials Research Express, vol. 6, no. 10, 2019, Art. no. 105019, doi: 10.1088/2053-1591/ab3613.

 

[59] N. W. Khun, H. Zhang, L. H. Lim, and J. L. Yang, “Mechanical and tribological properties of graphene modified epoxy composites,” KMUTNB International Journal of Applied Science and Technology, vol. 8, no. 2, pp. 101–109, 2015, doi: 10.14416/j.ijast.2015.04.001.

Full Text: PDF

DOI: 10.14416/j.asep.2023.11.009

Refbacks

  • There are currently no refbacks.