Page Header

Ultrasound-Assisted Biomimetic Synthesis of Mof-Hap Nanocomposite via 10xsbf-Like for the Photocatalytic Degradation of Metformin

Mark Tristan D.C. Español, ER Joshua G. Garcia, Louise Andrea V. Maligaya, Carla Mae S. Santos, Jan Abigail H. Santos, Nemia G. Suarnaba, Rugi Vicente C. Rubi, Reibelle Raguindin

Abstract


High levels of emerging pollutants, such as pharmaceutical compounds like metformin (MET), have been an issue for many years. The effective removal of these compounds from wastewater poses a significant challenge and has spurred interest among researchers. This study aims to integrate two of the prominent research interests in photocatalysis, Metal-Organic Frameworks (MOF), and Hydroxyapatite (HAp), and tests their effectiveness in the photocatalytic degradation of MET. The MOF-HAp was produced using a biomimetic method via 10xSBF-like solution with and without ultrasound assistance at varying biomimetic times. MOF-HAp nanocomposite’s photocatalytic degradation capabilities were tested by degrading MET, considering varying parameters – initial pollutant concentration, catalyst loading, and exposure time. Results showed that a biomimetic time of 6 h synthesized with ultrasound irradiation presented the most promising physicochemical properties for MOF-HAp, as verified by the X-ray Fluorescence (XRF), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET), X-ray Diffractometer (XRD), and Fourier Transform Infrared Spectroscopy (FTIR) analyses. In the photocatalytic degradation of MET, catalyst loading, exposure time, and initial pollutant concentration were found to have significant effects on the percent degradation. The initial concentration of 8 ppm, catalyst loading of 0.25 g, and 120 min of exposure time produced the highest percent degradation with an average of 82.25%. The findings of this study prove MOF-HAp's potential to effectively degrade organic and pharmaceutical pollutants in wastewater.


Keywords



 

[1] S. Foteinis and E. Chatzisymeon, “Heterogeneous photocatalysis for water purification,” in Nanostructured Photocatalysts. Amsterdam, Netherlands: Elsevier, pp. 75–97, 2020, doi: 10.1016/b978-0-12-817836-2.00004-1.

 

[2] C. F. Carbuloni, J. E. Savoia, J. S. Santos, C. A. Pereira, R. G. Marques, V. A. Ribeiro, and A. M. Ferrari, “Degradation of metformin in water by TiO2–ZrO2 photocatalysis,” Journal of Environmental Management, vol. 262, 2020, Art. no. 110347, doi: 10.1016/j.jenvman.2020.110347.

 

[3] G. A. Elizalde-Velázquez and L. M. Gómez- Oliván, “Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives,” Science of The Total Environment, vol. 702, 2020, 134924, doi: 10.1016/j.scitotenv.2019.134924.

 

[4] P. Venkatesan, P. Kumari, and N. Remya, “Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract,” Water Science and Technology, vol. 83, no. 5, pp. 1072–1084, 2021, doi: 10.2166/ wst.2021.040.

 

[5] W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environmental Science and Pollution Research, vol. 27, no. 3, pp. 2522–2565, 2019, doi: 10.1007/ s11356-019-07193-5.

 

[6] R. V. C. Rubi, J. G. Olay, P. B. G. Caleon, R. A. F. De Jesus, M. B. L. Indab, R. C. H. Jacinto, M. S. Sabalones, F. dela Rosa, and N. L. Hamidah, “Photocatalytic degradation of diazinon in g-C3N4/Fe(III)/persulfate system under visible LED light irradiation,” Applied Science and Engineering Progress, vol. 14, no. 1, pp. 100– 107, 2021, doi: 10.14416/j.asep.2020.12.008.

 

[7] H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, and R. Parmar, “A review on photocatalysis used for wastewater treatment: Dye degradation,” Water Air and Soil Pollution, vol. 234, no. 6, May 2023, Art. no. 349, doi: 10.1007/s11270-023-06359-9.

 

[8] M. P. Reddy, A. Venugopal, and M. Subrahmanyam, “Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension,” Applied Catalysis B-environmental, vol. 69, no. 3–4, pp. 164–170, Jan. 2007, doi: 10.1016/ j.apcatb.2006.07.003.

 

[9] K. Guesh, C. A. D. Caiuby, A. Mayoral, M. Díaz-García, I. Díaz, and M. Sánchez-Sánchez, “Sustainable preparation of MIL-100(FE) and its photocatalytic behavior in the degradation of methyl orange in water,” Crystal Growth & Design, vol. 17, no. 4, pp. 1806–1813, Mar. 2017, doi: 10.1021/acs.cgd.6b01776.

 

[10] M. Samy, M. G. Ibrahim, M. Fujii, K. E. Diab, M. F. Elkady, and M. G. Alalm, “CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor,” Chemical Engineering Journal, vol. 406, Feb. 2021, Art. no. 127152, doi: 10.1016/j.cej.2020.127152.

 

[11] M. Dubey, N. V. Challagulla, S. Wadhwa, and R. Kumar, “Ultrasound assisted synthesis of magnetic Fe3O4/ɑ-MnO2 nanocomposite for photodegradation of organic dye,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 609, Jan. 2021, Art. no. 125720, doi: 10.1016/j.colsurfa.2020.125720.

 

[12] A. R. Abbasi, M. Karimi, and K. Daasbjerg, “Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method,” Ultrasonics Sonochemistry, vol. 37, pp. 182–191, Jul. 2017, doi: 10.1016/j.ultsonch. 2017.01.007.

 

[13] T. Xia, Y. Lin, W. Li, and J. Mei, “Photocatalytic degradation of organic pollutants by MOFs based materials: A review,” Chinese Chemical Letters, vol. 32, no. 10, pp. 2975–2984, Oct. 2021, doi: 10.1016/j.cclet.2021.02.058.

 

[14] T. T. D e m i r t a ş , G . K a y n a k , a n d M . Gümüşderelioğlu, “Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation,” Materials Science and Engineering: C, vol. 49, pp. 713–719, Apr. 2015, doi: 10.1016/j.msec.2015.01.057.

 

[15] E. Aseman-Bashiz and H. Sayyaf, “Metformin degradation in aqueous solutions by electro-activation of persulfate and hydrogen peroxide using natural and synthetic ferrous ion sources,” Journal of Molecular Liquids, vol. 300, Feb. 2020, Art. no. 112285, doi: 10.1016/j.molliq. 2019.112285.

 

[16] B. Souza, A. F. Möslein, K. Titov, J. D. Taylor, S. Rudić, and J.-C. Tan, “Green reconstruction of MIL-100 (FE) in water for high crystallinity and enhanced guest encapsulation,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 22, pp. 8247–8255, May 2020, doi: 10.1021/ acssuschemeng.0c01471.

 

[17] R. Nivetha, K. Gothandapani, V. Raghavan, G. Jacob, R. Sellappan, P. Bhardwaj, S. Pitchaimuthu, A. N. M. Kannan, S. K. Jeong, and A. N. Grace, “Highly porous MIL-100(FE) for the hydrogen evolution reaction (HER) in acidic and basic media,” ACS Omega, vol. 5, no. 30, pp. 18941– 18949, Jul. 2020, doi: 10.1021/acsomega.0c02171.

 

[18] S. Sebastiammal, A. S. L. Fathima, S. Devanesan, M. S. AlSalhi, J. Henry, M. Govindarajan, and B. Vaseeharan, “Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: A perspective of nano-based drug delivery,” Journal of Drug Delivery Science and Technology, vol. 57, Jun. 2020, Art. no. 101752, doi: 10.1016/ j.jddst.2020.101752.

 

[19] A. Sánchez-Hernández, J. Martínez-Juárez, J. J. Gervacio-Arciniega, R. Silva-González, and M. J. Robles-Águila, “Effect of ultrasound irradiation on the synthesis of Hydroxyapatite/ Titanium oxide nanocomposites,” Crystals, vol. 10, no. 11, p. 959, Oct. 2020, doi: 10.3390/ cryst10110959.

 

[20] H. R. Mendoza, J. Jordens, M. V. L. Pereira, C. Lutz, and T. Van Gerven, “Effects of ultrasonic irradiation on crystallization kinetics, morphological and structural properties of zeolite FAU,” Ultrasonics Sonochemistry, vol. 64, Jun. 2020, Art. no. 105010, doi: 10.1016/ j.ultsonch.2020.105010.

 

[21] A. O. Lobo, H. Zanin, I. A. W. B. Siqueira, N. C. S. Leite, F. R. Marciano, and E. J. Corat, “Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites,” Materials Science and Engineering: C, vol. 33, no. 7, pp. 4305–4312, Oct. 2013, doi: 10.1016/ j.msec.2013.06.032.

 

[22] B. T. Le, D. D. La, and P. T. H. Nguyen, “Ultrasonic-Assisted fabrication of MIL-100(FE) Metal–Organic frameworks as a carrier for the controlled delivery of the chloroquine drug,” ACS Omega, vol. 8, no. 1, pp. 1262–1270, Dec. 2022, doi: 10.1021/acsomega.2c06676.

 

[23] A. A. Aabid, J. I. Humadi, G. S. Ahmed, A. T. Jarullah, M. A. Ahmed, and W. S. Abdullah, “Enhancement of desulfurization process for light gas oil using new zinc oxide loaded over alumina nanocatalyst,” Applied Science and Engineering Progress, vol. 16, no. 3, Feb. 2023, Art. no. 6756, doi: 10.14416/j.asep.2023.02.007.

 

[24] C. Jian-Hua, X. Wang, Y. Zhou, J. Li, and C. Wang, “Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal–organic framework MIL- 100(Fe),” Physical Chemistry Chemical Physics, vol. 18, no. 16, pp. 10864–10867, Jan. 2016, doi: 10.1039/c6cp00249h.

 

[25] M. B. Tahir, M. Sohaib, M. Sagir, and M. Rafique, “Role of nanotechnology in photocatalysis,” in Encyclopedia of Smart Materials. Amsterdam, Netherlands: Elsevier, pp. 578–589, 2022, doi: 10.1016/b978-0-12-815732-9.00006-1.

 

[26] V.-H. Nguyen, S. M. Smith, K. Wantala, and P. Kajitvichyanukul, “Photocatalytic remediation of persistent organic pollutants (POPs): A review,” Arabian Journal of Chemistry, vol. 13, no. 11, pp. 8309–8337, Nov. 2020, doi: 10.1016/j.arabjc. 2020.04.028.

 

[27] S. Gahlot, F. Dappozze, S. Mishra, and C. Guillard, “High surface area g-C3N4 and g-C3N4-TiO2 photocatalytic activity under UV and Visible light: Impact of individual component,” Journal of Environmental Chemical Engineering, vol. 9, no. 4, Aug. 2021, Art. no. 105587, doi: 10.1016/ j.jece.2021.105587.

 

[28] D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, and X. Wang, “Effects of particle size on the structure and photocatalytic performance by Alkali-Treated TIO2,” Nanomaterials, vol. 10, no. 3, p. 546, Mar. 2020, doi: 10.3390/ nano10030546.

 

[29] S. Estrada-Flores, C. M. Pérez-Berumen, L. A. García-Cerda, and T. E. Flores-Guía, “Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants,” Boletin De La Sociedad Espanola De Ceramica Y Vidrio, vol. 59, no. 5, pp. 209–218, Sep. 2020, doi: 10.1016/j.bsecv. 2019.10.003.

 

[30] A. B. D. Nandiyanto, R. Zaen, and R. Oktiani, “Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles,” Arabian Journal of Chemistry, vol. 13, no. 1, pp. 1283–1296, Jan. 2020, doi: 10.1016/j.arabjc.2017.10.010.

 

[31] F. Yang, J. Qu, Y. Zheng, Y. Cai, X. Yang, C. M. Li, and J. Hu, “Recent advances in high-crystalline conjugated organic polymeric materials for photocatalytic CO2 conversion,” Nanoscale, vol. 14, no. 41, pp. 15217–15241, Jan. 2022, doi: 10.1039/d2nr04727f.

 

[32] M. D. Purkayastha, S. Denrah, N. Singh, M. Sarkar, G. K. Darbha, and T. P. Majumder, “Crystal structure dependent photocatalytic degradation of manganese and titanium oxides composites,” SN Applied Sciences, vol. 2, no. 6, May 2020, doi: 10.1007/s42452-020-2933-7.

 

[33] P. Venkatesan, P. Kumari, and N. Remya, “Solar photocatalytic degradation of metformin by TiO2 synthesized using Calotropis gigantea leaf extract,” Water Science and Technology, vol. 83, no. 5, pp. 1072–1084, Feb. 2021, doi: 10.2166/ wst.2021.040.

 

[34] W. Lin, X. Zhang, P. Li, Y. Tan, and Y. Ren, “Ultraviolet photolysis of metformin: Mechanisms of environmental factors, identification of intermediates, and density functional theory calculations,” Environmental Science and Pollution Research, vol. 27, no. 14, pp. 17043– 17053, Mar. 2020, doi: 10.1007/s11356-020- 08255-9.

 

[35] S. Abbasi, “Improvement of photocatalytic decomposition of methyl orange by modified MWCNTs, prediction of degradation rate using statistical models,” Journal of Materials Science: Materials in Electronics, vol. 32, no. 11, pp. 14137– 14148, May 2021, doi: 10.1007/s10854-021- 05707-x.

 

[36] A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, Q. Khan, and M. Maqbool, “Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution,” Journal of Industrial and Engineering Chemistry, vol. 97, pp. 111–128, May 2021, doi: 10.1016/j.jiec.2021.02.017.

Full Text: PDF

DOI: 10.14416/j.asep.2023.11.002

Refbacks

  • There are currently no refbacks.