Development of Real-Time Fluorescence CRISPR/Cas12a-Based Detection as a Portable Diagnostic System Using Integrated Circuits
Abstract
Keywords
[1] R. Augustine, A. Hasan, S. Das, R. Ahmed, Y. Mori, T. Notomi, B. D. Kevadiya, and A. S. Thakor, “Loop-Mediated Isothermal Amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic,” Biology (Basel), vol. 9, no. 8, p. 182, 2020.
[2] Y. Zhang, Y. Zhang, and K. Xie, “Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice,” Molecular Breeding, vol. 40, 2020, Art. no. 11.
[3] K. Buddhachat, N. Sripairoj, O. Ritbamrung, P. Inthima, K. Ratanasut, T. Boonsrangsom, T. Rungrat, P. Pongcharoen, and K. Sujipuli, “RPA-Assisted Cas12a system for detecting pathogenic xanthomonas oryzae, a causative agent for bacterial leaf blight disease in rice,” Rice Science, vol. 29, no. 4, pp. 340–352, 2022.
[4] C. Sukphattanaudomchoke, S. Siripattanapipong, T. Thita, S. Leelayoova, P. Piyaraj, M. Mungthin, and T. Ruang-Areerate, “Simplified closed tube loop mediated isothermal amplification (LAMP) assay for visual diagnosis of Leishmania infection,” Acta Tropica, vol. 212, 2020, Art. no. 105651.
[5] A. Kumaran, N. Jude Serpes, T. Gupta, A. James, A. Sharma, D. Kumar, R. Nagraik, V. Kumar, and S. Pandey, “Advancements in CRISPR-based biosensing for next-gen point of care diagnostic application,” Biosensors (Basel), vol. 13, no. 2, 2023.
[6] X. Liu, X. Qiu, S. Xu, Y. Che, L. Han, Y. Kang, Y. Yue, S. Chen, F. Li, and Z. Li, “A CRISPR-Cas12a-assisted fluorescence platform for rapid and accurate detection of nocardia cyriacigeorgica,” Frontiers in Cellular and Infection Microbiology, vol. 12, 2022, Art. no. 835213.
[7] L. Fang, L. Yang, M. Han, H. Xu, W. Ding, and X. Dong, “CRISPR-cas technology: A key approach for SARS-CoV-2 detection,” Front Bioeng Biotechnol, vol. 11, 2023, Art. no. 1158672.
[8] J. H. Soh, E. Balleza, M. N. A. Rahim, H. M. Chan, S. M. Ali, J. K. C. Chuah, S. Edris, A. Atef, A. Bahieldin, J. Y. Ying, and J. S. M. Sabir, “CRISPR-based systems for sensitive and rapid on-site COVID-19 diagnostics,” Trends Biotechnol, vol. 40, no. 11, pp. 1346–1360, 2022.
[9] J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gopez, E. Hsu, W. Gu, S. Miller, C. Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen, and C. Y. Chiu, “CRISPR-Cas12-based detection of SARS-CoV-2,” Nat Biotechnol, vol. 38, no. 7, pp. 870–874, 2020.
[10] Y. Dai, Y. Jia, J. Correll, X. Wang, and Y. Wang, “Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae,” Fungal Genetics and Biology, vol. 47, no. 12, pp. 973–980, 2010.
[11] Y. Zhou, F. Lei, Q. Wang, W. He, B. Yuan, and W. Yuan, “Identification of novel alleles of the rice blast-resistance gene Pi9 through sequence-based allele mining,” Rice, vol. 13, no. 1, 2020, Art. no. 80.
[12] J. Huang, W. Si, Q. Deng, P. Li, and S. Yang, “Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae,” BMC Genet, vol. 15, 2014, Art. no. 45.
[13] Y. Petit-Houdenot and I. Fudal, “Complex Interactions between fungal avirulence genes and their corresponding plant resistance genes and consequences for disease resistance management,” vol. 8, 2017, doi: 10.3389/ fpls.2017.01072.
[14] J. Wu, Y. Kou, J. Bao, Y. Li, M. Tang, X. Zhu, A. Ponaya, G. Xiao, J. Li, C. Li, M. Y. Song, C. J. Cumagun, Q. Deng, G. Lu, J. S. Jeon, N. I. Naqvi, and B. Zhou, “Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice,” New Phytol, vol. 206, no. 4, pp. 1463–1475, 2015.
[15] P. Puanprapai, T. Toojunda, and C. Jantasuriyarat, “Rice blast fungus avirulence gene AvrPi9 detection using a combination of RPA and CRISPR-Cas12a techniques,” HAYATI Journal of Biosciences, vol. 12, no. 8, 2023, Art. no.1569.
[16] Y. Wu, L. Bai, C. Ye, Y. Guan, K. Yan, H. Chen, and Z. Jiang, “Novel miniaturized fluorescence loop-mediated isothermal amplification detection system for rapid on-site virus detection,” Front Bioeng Biotechnol, vol. 10, 2022, Art. no. 964244.
[17] S. Jirawannaporn, U. Limothai, S. Tachaboon, J. Dinhuzen, P. Kiatamornrak, W. Chaisuriyong, J. Bhumitrakul, O. Mayuramart, S. Payungporn, and N. Srisawat, “Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/ Cas12a targeting lipL32,” PLOS Neglected Tropical Diseases, vol. 16, no. 1, 2022, Art no. e0010112.
[18] J. P. Holmann, Experimental Methods for Engineers, 8th ed. New York: McGraw-Hill, pp. 6–7, 2011.
[19] D. M. Jenkins, R. Kubota, J. Dong, Y. Li, and D. Higashiguchi, “Handheld device for real-time, quantitative, LAMP-based detection of Salmonella enterica using assimilating probes,” Biosens Bioelectron, vol. 30, no. 1, pp. 255–260, 2011.
[20] Bio-Rad laboratories, “CFX Connect Real-time PCR System,” 2023. [Online]. Available: http:// www.bio-rad.com
[21] J. R. Taylor, An Introduction to Error Analysis, 2nd ed. New York: University Science Books, pp. 97–103, 1997.
[22] Hamamatsu, “C12666MA Mini-spectrometer,” 2022. [Online]. Available: http://www.hama matsu.com
[23] M. L. Pieck, A. Ruck, M. L. Farman, G. L. Peterson, J. P. Stack, B. Valent, and K. F. Pedley, “Genomics-Based marker discovery and diagnostic assay development for wheat blast,” Plant Disease, vol. 101, no. 1, pp. 103–109, 2017.
[24] G. Sun, J. Liu, G. Li, X. Zhang, T. Chen, J. Chen, H. Zhang, D. Wang, F. Sun, and H. Pan, “Quick and accurate detection and quantification of Magnaporthe oryzae in rice using real-time quantitative polymerase chain reaction,” Plant Disease, vol. 99, no. 2, pp. 219–224, 2015.
[25] M. Su'udi, J. Kim, J. M. Park, S.C. Bae, D. Kim, Y. H. Kim, and I. P. Ahn, “Quantification of rice blast disease progressions through Taqman real-time PCR,” Mol Biotechnol, vol. 55, no. 1, pp. 43–48, 2013.
[26] L. Rajendran, G. Nagaraj, A. Kamalakannan, M. Ganesan, R. Subramanian, and K. Marimuthu, “Development of Loop mediated isothermal amplification (LAMP) assay for the detection of Magnaporthe oryzae causing blast in rice,” Research Square, 2022, doi: 10.21203/rs.3.rs- 1322856/v1.
[27] L. Li, S. Y. Zhang, and C. Q. Zhang, “Establishment of a rapid detection method for rice blast fungus based on one-step loop-mediated isothermal amplification (LAMP),” Plant Disease, vol. 103, no. 8, pp. 1967–1973, 2019.
[28] M. Prasannakumar, P. B. Parivallal, P. Devanna, H. Mahesh, and E. Edwinraj, “LAMP-based foldable microdevice platform for the rapid detection of Magnaporthe oryzae and Sarocladium oryzae in rice seed,” Scientific Reports, vol. 11, p. 178, 2021.
[29] S. F. Ortega, J. Tomlinson, J. Hodgetts, D. Spadaro, M. L. Gullino, and N. Boonham, “Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens Fusarium fujikuroi and Magnaporthe oryzae in rice seed,” Plant Disease, vol. 102, no. 8, pp. 1549–1558, 2018.
[30] M. U. Younas, G. Wang, H. Du, Y. Zhang, I. Ahmad, N. Rajput, M. Li, Z. Feng, K. Hu, N.U. Khan, W. Xie, M. Qasim, Z. Chen, and S. Zuo, “Approaches to reduce rice blast disease using knowledge from host resistance and pathogen pathogenicity,” International Journal of Molecular Sciences, vol. 24, no. 5, p. 4985, 2023.
[31] J. Tan, H. Zhao, J. Li, Y. Gong, and X. Li, “The devastating rice blast airborne pathogen Magnaporthe oryzae-a review on genes studied with mutant analysis,” Pathogens, vol. 12, no. 3, 2023, Art. no. 379.
[32] A. Sharma, J. B. Jones, and F. F. White, “Recent advances in developing disease resistance in plants,” F1000Res, vol. 8, 2019, doi: 10.12688/ f1000research.20179.1.
[33] I. M. Lobato and C. K. O'Sullivan, “Recombinase polymerase amplification: Basics, applications and recent advances,” Trends Analytical Chemistry, vol. 98, pp. 19–35, Jan. 2018.
[34] L. Dong, S. Liu, J. Li, D. Tharreau, P. Liu, D. Tao, and Q. Yang, “A rapid and simple method for DNA preparation of Magnaporthe oryzae from single rice blast lesions for PCR-based molecular analysis,” The Plant Pathology Journal, vol. 38, no. 6, pp. 679–684, 2022.
DOI: 10.14416/j.asep.2023.07.002
Refbacks
- There are currently no refbacks.