Page Header

The Role of Biofertilizers in Sustainable Agriculture: An Eco-Friendly Alternative to Conventional Chemical Fertilizers

Oluwaseyi Matthew Abioye, David Ayodeji Olasehinde, Taiwo Abadunmi

Abstract


Empirical observations and theory both discourage the production and use of chemical fertilizers as they can lead to environmental pollution, soil degradation and reduction in soil fertility in the long term. In certain cases, excess nutrients from chemical fertilizers such as nitrogen and phosphorus can leach into nearby water causing eutrophication. Also, the production process requires large amounts of energy, which often comes from burning fossil fuels contributing significantly to greenhouse gas concentration. Biofertilizers present a promising alternative to chemical fertilizers and improve agricultural sustainability and reduce environmental pollution. However, there is still more to learn about the potential benefits of biofertilizers based on factors such as soil type, crop species, and environmental conditions. This review shows the Trichoderma species as one of the most prominent biofertilizers that can help in plant growth promotion and serve as a biocontrol agent against plant pathogens. An extensive summary of scientific literature on Trichoderma’s production, effectiveness in comparison to chemical fertilizers and its potential for use are discussed. Trichoderma species have been documented to possess numerous mechanisms to combat a wide range of plant pathogens, protect plants from biotic and abiotic stresses, reduce drought and salinity stress fungal attacks and promote root growth. Trichoderma is an ecofriendly organic fertilizer that can promote food security and enhance sustainable crop production. This article provides a comprehensive and up-to-date summary of the current state of knowledge on Trichoderma as a biofertilizer and indicates future research directions.

Keywords



[1] M. P. Gundupalli and M. Sriariyanun, “Recent trends and updates for chemical pretreatment of lignocellulosic biomass,” Applied Science and Engineering Progress, vol. 16, no. 1, 2023, Art. no. 5842, doi: 10.14416/j.asep.2022.03.002.

 

[2] M. M. Hussain, Z. U. R. Faooqi, J. Latif, M. U. Mubarak, and F. Younas, “Bioremediation,” Soil Bioremediation, pp. 15–40, 2021, doi: 10.1002/9781119547976.ch2.

 

[3] S. R. Qasim, “Wastewater Treatment Plants: Planning, Design, and Operation,” London: Routledge, 2017.

 

[4] FAO, “FAO Stat Database Collections,” 2022. [Online]. Available online: http://www.fao.org/ faostat/en/#country

 

[5] G. Billentin, L. Chapuis-Lardy, E. Le Cadre, and C. Feller, “Mitigating soil nutrient depletion and greenhouse gas emissions in tropical agriculture using organic residues: Evidence from cassava-based systems,” Agriculture, Ecosystems & Environment, vol. 196, pp. 170–177, 2014.

 

[6] B. L. Bodirsky, A. Popp, H. Lotze-Campen, J. P. Dietrich, S. Rolinski, I. Weindl, C. Schmitz, C. Müller, M. Bonsch, and F. Humpenöder, “Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution,” Nature Communications, vol. 5, pp. 1–7, 2014.

 

[7] W. Steffen, K. Richardson, J. Rockstr ̈om, S. E. Cornell, I. Fetzer, E. M. Bennett, R. Biggs, S. R. Carpenter, W. de Vries, C. A. de Wit, C. Folke, D. Gerten, J. Heinke, G. M. Mace, L. M. Persson, V. Ramanathan, B. Reyers, and S. Sorlin, “Planetary boundaries: guiding human development on a changing planet,” Science, vol. 347, no. 6223, 2015, Art. no. 125985.

 

[8] M. R. Wang, L. Ma, M. Strokal, Y. N. Chu, C. Kroeze,“Exploring nutrient management options to increase nitrogen and phosphorus use efficiencies in food production of China,” Agricultural Systems, vol. 163, pp. 58–72, 2018.

 

[9] Z. P. Sha, X. Ma, J. X. Wang, T. T. Lv, Q. Q. Li, T. Misselbrook, and X. J. Liu, “Effect of N stabilizers on fertilizer-N fate in the soil-crop system: a meta-analysis,” Agriculture, Ecosystems & Environment, vol. 290, 2020, Art. no. 106763.

 

[10] H. R. Li, X. R. Mei, J. D. Wang, F. Huang, W. P. Hao, and B. G. Li, “Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: A meta-analysis in China,” Agricultural Water Management, vol. 244, pp. 106–534, 2021.

 

[11] P. Smith, D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O’Mara, C. Rice, B. Scholes, O. Sidorenko, M. Howden, T. McAllister, G. Pan, V. Romanenkov, U. Schneider, S. Towprayoon, M. Wattenbach, and J. Smith, “Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B,” Biological Sciences, vol. 363, no. 1492, pp. 789813, 2008.

 

[12] H. R. Khan, K. Rahman, A. J. M. Abdur Rouf, G. S. Sattar, Y. Oki, and T. Adachi, “Assessment of degradation of agricultural soils arising from brick burning in selected soil profiles,” International Journal of Environmental Science and Technology, vol. 4 no. 4, pp. 471–480, 2007.

 

[13] E. Keana, “Nitrates not adsorbed to soil materials leach to groundwater and limit plant growth due to excessive buildup,” Journal of Environmental Science, vol. 30, no. 2, pp. 45–52, 2022.

 

[14] M. Mazid and T. A. Khan, “Future of biofertilizers in overview. Indian International Agriculture,” Journal of Agricultural and Food Research, vol. 3, no. 3, pp. 10–23, 2015.

 

[15] N. Raja, “Biopesticides and biofertilizers: Ecofriendly sources for sustainable Agriculture,” Journal of Biofertilizers & Biopesticides, vol. 4, no. 1, 2013, Art. no. 1000e112.

 

[16] N. Fatimah, S. A. Dar, S. Ashraf, S. Rashid, Y. Mukhtar, S. H. Mir, “Biofertilizers for Sustainable Agriculture-An Overview,” International Journal of Current Microbiology and Applied Sciences, vol. 10 no. 6, pp. 1–14, 2021.

 

[17] R. K. Sinha, D. Valani, K. Chauhan, and S. Agarwal, “Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: Reviving the dreams of Sir Charles Darwin,” Journal of Agricultural Biotechnology and Sustainable Development, vol. 1, pp. 50–64, 2014.

 

[18] J. S. Singh, V. C. Pandey, and D. P. Singh, “Efficient soil microorganisms: A new dimension or sustainable agriculture and environmental development,” Agric Ecosystem Environ, vol. 140, pp. 339–353, 2011.

 

[19] K. Kano, H. Katazawa, K. Suzuki, A. Wiiastuti, H. Odani, S. Zhou, Y. D. Chinta, Y. Eguchi, M. Shinohara, and T. Sato, “Effects of organic fertilizer on bok choy growth and quality in hydroponic cultures,” Agronomy, vol. 11, no. 3, 2021.

 

[20] E. C. Torres and C. G. C. Somero, “How organic fertilizers can be used as a plant Nutrient Source in Hydroponics: A Review,” Applied Science and Engineering Progress, vol. 16, no. 4, 2023, Art. no. 6359, doi: 10.14416/j.asep.2022.11.002.

 

[21] W. A. Dick and E. G. Gregorich, “Developing and maintaining soil organic matter levels,” Managing Soil Quality: Challenges in Modern Agriculture, vol. 103, 2004, Art. no. 120.

 

[22] S. Li, N. Zhang, Z. Zhang, J. Luo, B.Shen, R. Zhang, and Q. Shen, “Antagonist Bacillus Subtilis HJ5 Controls Verticillium wilt of cotton by root colonization and biofilm formatin,” Biology and Fertility of Soils, vol. 49, no. 3, pp. 95–303, 2013.

 

[23] K. Ritika and G. Utpal, “Bio-fertilizers: A novel tool for agriculture,” International Journal of Current Microbiology and Applied Sciences, vol. 3, no. 9, pp. 719–726, 2014.

 

[24] R. Thangjam and R. Imotomba, “Trichoderma spp. as biofertilizer and biocontrol agent: A review,” International Journal of Current Microbiology and Applied Sciences, vol. 10, no. 2, pp. 2657–2671, 2021.

 

[25] N. W. Zaidi and U. S. Singh, “Development of improved technology for mass multiplication and delivery of fungal (Trichoderma) and Bacterial (Pseudomonas) bicontrol agents,” Journal of Mycology and Plant Pathology, vol. 34, no. 3, pp. 732–741, 2004.

 

[26] W. A. Vargas, J. C. Mandawe, C. M. Kenerley, A. L. Plant, “Synthetic biology in fungi: Engineering of a filamentous fungus for improved cellulase production,” ACS Synthetic Biology, vol. 1, no. 5, 214–220, 2009.

 

[27] M. Lorito, S. L. Woo, G. E. Harman, and E. Monte, “Translational research on Trichoderma: From 'omics to the field,” Annual Review of Phytopathology, vol. 48, 395–417, 2010.

 

[28] R. Mukhopadhyay and S. K. Pan, “Isolation and selection of some antagonistic Trichoderma species from different new alluvial zones of Nadia district West Bengal,” Journal of The Botanical Society of Bengal, vol. 66, no. 2, pp. 149–152, 2012.

 

[29] P. Chaverri, F. Branco-Rocha, W. Jaklitsch, R. Gazis, T. Degenkolb, and G. J. Samuels, “Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains,” Mycologia, vol. 107, pp. 558–590, 2015.

 

[30] F. Vinale, G. Sivasithamparam, R. Hermosa, G. E. Harman, and S. L. Woo, “A novel role for Trichoderma secondary metabolites with plants,” Frontiers in Plant Science, vol. 5, pp. 1–11, 2014.

 

[31] V. K. Gupta, P. Mishra, S. Gaur, R. Pandey, and B. P. Singh “Trichoderma harzianum-mediated reprogramming of oxidated stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani,” Scientific Reports, vol. 9, no. 1, pp. 1–13, 2019.

 

[32] R. Hermosa, E. Monte, B. Nicolás, and S. Gutiérrez, “Genomics of Trichoderma,” Applied Microbiology and Biotechnology, vol. 99, no.16, pp. 1–14, 2015.

 

[33] D. Singh, D. Singh, V. Kumar, A. Kumar, P. Singh, and N. Srivastava, “Antimicrobial and plant growth-promoting potential of Trichoderma viride against phytopathogenic fungi,” Brazilian Journal of Microbiology, vol. 49, no. 4, pp. 942– 950, 2018.

 

[34] S. Mäkinen, J. Mäkelä, T. Laine, M. Saloheimo, M. Penttilä, “Transcriptome analysis of Trichoderma reesei response to lignocellulose containing substrates,” Fungal Genetics and Biology, vol. 72, pp. 91–101, 2014.

 

[35] R. H. Bischof, A. Rieseberg, D. A. A. Werner, K. M. Schuster, and C. P. Kubicek, “Transcriptome profiling to identify genes involved in fungal lignocellulosic biomass conversion,” Applied and Environmental Microbiology, vol. 82, no. 3, pp. 912–924, 2016.

 

[36] M. B. Silva, P. S. Motta, G. R. M. Almeida, and L. A. C. A. Almeida, “Trichoderma koningii as a potential bioremediation agent: A review,” Journal of Environmental Management, vol. 240, pp. 225–233, 2019.

 

[37] C. Desai, K. Patel, K. Patel, and J. Kapadiya, “A Comparative study of bioremediation of diesel contaminated soil by Trichoderma koningii and Pseudomonas putida,” International Journal of Current Microbiology and Applied Sciences, vol. 8, no. 7, pp. 1266–1277, 2019.

 

[38] H. A. Contreras-Cornejo, J. M. López-Bucio, C. Calderón-Vázquez, A. F. L. Macías-Rodríguez, A. Rodríguez-Hernández, L. M. SandOval-Sobrino, and J. L. Reyes-de la Cruz, “Trichoderma atroviride promotes growth of Arabidopsis seedlings under salt stress through enhanced antioxidant system and stress-related gene expression,” Journal of Plant Growth Regulation, vol. 37, no. 3, 929–940, 2018.

 

[39] E. A. Barraza-Ortega, A. F. Barrientos-Priego, C. G. Salgado-Garciglia, M. A. Cruz-Hernandez, F. J. Perez-Brito, A. Benavides-Mendoza, “A novel use of Trichoderma atroviride as a biocontrol agent against the phytopathogen Sclerotinia sclerotiorum,” Biological Control, vol. 125, pp. 116–125, 2018.

 

[40] A. Khosro and S. Yousef, “Biofertilizers: A novel tool for agriculture,” Journal of Applied Environmental and Biological Sciences, vol. 2, no. 11, pp. 568–575, 2012.

 

[41] J. K. Vessey, “Plant growth promoting rhizobacteria as biofertilizers,” Plant Soil, vol. 255, no. 2, pp. 571–586, 2003.

 

[42] M. E. Haque, M. P. Anwar, M. T. Islam, and U. S. M. Kanto, “Use of Trichoderma species as biocontrol agent in Bangladesh,” Bangladesh Journal of Agricultural Research, vol. 35, no. 3, pp. 433–444, 2010.

 

[43] R. Raghuwanshi, “Opportunities and challenges to sustainable agriculture in India,” NEBIO, vol. 3, no. 2, pp. 78–86, 2012.

 

[44] P. Mishra and S. K. Dash, “A review on biofertilizer: Its composition, benefits and scope,” International Journal of Environmental, Agriculture and Biotechnology, vol. 1, no. 5, pp. 2026–2032, 2014.

 

[45] M. A. Mia and Z. H. Shamsuddin, “Rhizobium as a crop enhancer and biofertilizer for increased cereal production,” African Journal of Biotechnology, vol. 9, pp. 6001–6009, 2010.

 

[46] M. R. Ismail, S. A. Aziz, I. Rasdi, and H. Mohd Saud, “The role of biofertilizer in improving soil fertility and crop productivity,” Agricultural Technology, vol. 10, no. 1, pp. 25–36, 2014.

 

[47] R. Bhattacharjee and U. Dey, “Role of biofertilizers in soil fertility and agriculture management,” in Biofertilizers for Sustainable Agriculture and Environment. New Delhi: Springer, 2014, pp. 1–30.

 

[48] J. U Itelima, W. J. Bang, I. A. Onyimba, M. D. Sila, and O. J. Egbere, “Biofertilizers as Key Player in enhancing soil fertility and crop productivity: A Review,” Direct Research Journal of Agriculture and Food Science, vol. 6, no. 3, pp. 73–83, 2018.

 

[49] A. O. Adesemoye and J. W. Kloepper, “Plant Microbes interactions in enhanced fertilizer use efficiency,” Applied Microbiology and Biotechnology, vol. 85, pp. 1–12, 2009.

 

[50] A. H. Norhazimah, “Effects of using enhanced bio-fertilizer containing N-fixer Bacteria on patchouli growth,” Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, 2009.

 

[51] A. Sivasamy, R. Krithika, and K. Arulmozhiselvan, “Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma harzianum,” Journal of Hazardous Materials, vol. 321, pp. 860–868, 2017.

 

[52] R. Mehrotra, R. Singh, and A. K. Pandey, “Biodegradation of trichloroethylene (TCE) by Trichoderma reesei,” Environmental Science and Pollution Research, vol. 18, no. 9, pp. 1544– 1548, 2011.

 

[53] M. Kumar, S. Mishra, and R. P. Singh, “Use of Vetiver and Trichoderma in heavy metal contaminated soil,” International Journal of Current Microbiology and Applied Sciences, vol. 4, no. 1, pp. 332–338, 2015.

 

[54] P. Tripathi, P. C. Singh, A. Mishra, P. S. Chauhan, S. Dwivedi, and R. T. Bais, “Trichoderma: A potential bioremediator for environmental cleanup,” Clean Technologies and Environmental Policy, vol. 15, no. 4, pp. 541–550, 2013.

 

[55] E. L Errasquín and C. Vázquez, 2003. “Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge, Chemosphere, vol. 50, no. 1, pp. 137–143, 2003.

 

[56] S. Hasan, “Potential of Trichoderma sp. in bioremediation: A review,” International Journal of Applied Engineering Research, vol. 3, no. 9, pp. 776–779, 2016.

 

[57] S. S. Mahdi, H. T. Abeer, and E. Kusvuran, “Phosphorus solubilizing biofertilizers: A review,” Agronomy for Sustainable Development, vol. 32, no. 3, pp. 631–643, 2012.

 

[58] K. S. Arun, “Bio-fertilizers for sustainable agriculture,” in Biofertilizers for sustainable agriculture, A. K. S. Jodhpur, India: Agribios publishers, pp. 196–197, 2007.

 

[59] B. R. Glick, “Plant growth-promoting bacteria: Mechanisms and applications,” Scientifica, vol. 2012, 2012, Art. no. 963401, doi: 10.6064/ 2012/963401.

 

[60] T. Mahanty, S. Bhattacharjee, and M. Goswami, “Biofertilizers: A potential approach for sustainable agriculture development,” Environmental Science and Pollution Research, vol. 24, pp. 3315–3335, 2017.

 

[61] M. B. Vázquez, V. Barrera, and V. Bianchinotti, “Molecular identification of three isolates of Trichoderma harzianum isolated from agricultural soils Argentina, and their abilities to detoxify in vitro metsulfuron methyl,” Botany, vol. 93, pp. 793–800, 2015.

 

[62] G. Zafra, A. Moreno-Montaño, A. E. Absalón, and D. V. Cortés-Espinosa, “Element of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum,” Environmental Science and Pollution Research, vol. 22, 1034– 1042, 2015.

 

[63] A. I. Askar, G. H. Ibrahim, and K. A. Osman, “Biodegradation kinetics of bromoxynil as a pollution control technology,” Egyptian Journal of Aquatic Research, vol. 33, no. 3, pp. 111–121, 2007.

 

[64] A. D’Urso, D. Gapes, and M. Bravi, “Bioremediation of olive oil mill wastewaters by fungal (Trichoderma viride, strain 8/90) sequencing batch reactor,” Chemical Engineering Transactions, vol. 14, pp. 481–486, 2008.

 

[65] M. Yazdani, C. K. Yap, F. Abdullah, and S. G. Tan, “Trichoderma atroviride as a bioremediator of Cu pollution: An in vitro study,” Toxicological and Environmental Chemistry, vol. 91, no. 7, pp. 1305–1314, 2009.

 

[66] O. P. Ahlawat, P. Gupta, S. Kumar, D. K. Sharma, and K. Ahlawat, “Bioremediation of fungicides by spent mushroom substrate and its associated microflora,” Indian Journal of Microbiology, vol. 50, no. 4, pp. 390–395, 2010.

 

[67] F. Mohsenzadeh and F. Shahrokhi, “Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species,” Journal of Environmental Health Science and Engineering, vol. 12, no. 1, pp. 1–7, 2014.

 

[68] L. F. Yao, Y. Teng, Y. M. Luo, P. Christie, W. T. Ma, F. Liu, Y. G. Wu, Y. Luo, and Z. G. Li, “Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Trichoderma reesei FS10-C and effect of bioaugmentation on an aged PAH-contaminated soil,” Bioremediation Journal, vol. 19, p. 91, 2015.

 

[69] P. Kumar, P. Sharma, E. A. Siril, M. W. Ansari, “Bioaccumulation of hexavalent chromium by Trichoderma viride: A mechanistic study,” Journal of Hazardous Materials, vol. 323, pp. 129–139, 2017.

 

[70] T. H. Nazifa, M. A. Ahmad, T. Hadibarata, and A. Aris, “Bioremediation of diesel oil spill by filamentous fungus Trichoderma reesei h002 in aquatic environment,” International Journal of Integrated Engineering, vol. 10, no. 9, pp. 103–107, 2018.

 

[71] Z. A. Alothman, A. H. Bahkali, A. M. Elgorban, M. S. Al-Otaibi, A. A. Ghfar, S. A. Gabr, S. M. Wabaidur, M. A. Habila, and A. Y. B. H. Ahmed, “Bioremediation of explosive TNT by Trichoderma viride,” Molecules, vol. 25, no. 6, p.1393, 2020.

 

[72] J. Tang, L. Liu, X. Huang, Y. Li, Y. Chen, J. Chen, “Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos,” Canadian Journal of Microbiology, vol. 56, no. 2, pp. 121–127, 2020.

 

[73] P. Adams, F. A. A. M. De-Leij, and L. M. Lynch, “Trichoderma harzianum Rifai 1295-22 mediates Growth promotion of crack willow (Salix fragilis) saplings in both clean and metal contaminated soil,” Microbial Ecology, vol. 54, no. 2, pp. 306–313, 2007.

 

[74] L. Hatvani, L. Manczinger, L. Kredics, A. Szekeres, Z. Antal, and C. Vágvölgyi, “Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion. Antonie van Leeuwenhoek,” Antonie Van Leeuwenhoek, vol. 89, pp. 3–4, 387–393, 2006.

 

[75] G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, “Trichoderma species opportunistic, avirulent plant symbionts,” Nature Reviews Microbiology, vol. 2, pp. 43–56, 2004.

 

[76] L. Kredics, L. Manczinger, Z. Antal, Z. Penzes, A. Szekeres, F. Kevei, and E. Nagy, “In vitro water activity and pH dependence of mycelia growth and extracellular activities of Trichoderma strains with biocontrol potential,” Journal of Applied Microbiology, vol. 96, pp. 491–498, 2004.

 

[77] A. Katayama and F. Matsumura, “Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum,” Environmental Toxicology and Chemistry, vol. 12, no. 6, pp. 1059–1065, 1993.

 

[78] J. C. K. Tabet and E. P. Lichtenstein, “Degradation of [14C] photodieldrin by Trichoderma viride as affected by other insecticides,” Canadian Journal of Microbiology, vol. 22, no. 9, pp. 1345–1356, 1976.

 

[79] H. Odame, “Biofertilizer in Kenya: Research, production and extension delemmas,” Biotechnology and Development Monitor, vol. 30, no. 10, pp. 20–23, 1997.

 

[80] M. El-Komy and A. Hesham, “Comobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants,” Food Technology and Biotechnology, vol. 43, pp. 19–27, 2004.

 

[81] Y. Okon, “Azospirillum as a potential inoculant for agriculture,” Trends in Biotechnology, vol. 3, no. 9, pp. 223–228, 1985.

 

[82] I. Noshin, B. Asghari, and I. Sumera, “Variation in Rhizobium and Azospirillum strains isolated from maize growing in arid and semiarid areas,” International Journal of Agriculture and Biology, vol. 10, pp. 612–618, 2008.

 

[83] P. Sivasakthivelan and P. Saranraj, “Azospirillum and its formulations: A review,” International Journal of Microbiology Research, vol. 4, pp. 275–287, 2013.

 

[84] A. M. Shaheen, A. R. Fatema, and S. M. Singer, “Growing onion without chemical Fertilization,” Research Journal of Agriculture and Biological Sciences, vol. 3, no. 2, pp. 95–104, 2007.

 

[85] V. Rodd, P. R. Warman, P. Hickelton, and K. Webb, “Comparison of N fertilizer, source separated municipal solid waste compost and semi-solid beef manure on the nutrient concentration in boot-stage barley and wheat tissue,” Canadian Journal of Soil Science, vol. 82, p. 33, 2002.

 

[86] K. M. Rahman, A. H. Molla, and M. A. Rahman, “Feasibility of sustainable recycling of municipal solid waste as organic fertilizer for plant growth and development,” The Agriculturists, vol. 4, pp. 7–14, 2006.

 

[87] D. M. Sullivan, A. I. Bary, D. R. Thomas, S. C. Fransen, and C. G. Cogger, “Food waste compost effects on fertilizer nitrogen deficiency, available nitrogen and tall fescue yield,” Soil Science Society of American Journal, vol. 66, pp. 154–161, 2002.

 

[88] K. A. Rahim, “Biofertilizers technology: Towards sustainable agriculture,” Malaysian Agricultural Research and Development Institute (MARDI), Kuala Lumpur, Malaysia, 2002.

 

[89] A. L. Muñoz-Celaya, M. Ortiz-García, E. J. Vernon-Carter, J. Jauregui- Rincón, E. Galindo, and L. Serrano-Carreón, “Spray-drying microencapsulation of Trichoderma harzianum conidia in carbohy¬drate polymers matrices,” Carbohydrate Polymers, vol. 88, pp. 1141–1148, 2012.

 

[90] G. Broeckx, D. Vandenheuvel, T. Henkens, S. Kiekens, M. F. L. van den Broek, S. Lebeer, and F. Kiekens, “Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage,” International Journal of Pharmaceutics, vol. 534, pp. 35–41,2017.

 

[91] L. F. Reyes, J. Córdova, F. Castillo, M. Toro, “Fungal formulations as biocontrol agents against plant-pathogenic fungi,” in Advances in Applied Microbiology vol. 105, S. Sariaslani and G. M. Gadd, Eds. Massachusetts: Academic Press, 2018, pp. 49–83.

 

[92] X. Jin and D. Custis, “Microencapsulating aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures,” Biological Control, vol. 56, pp. 202–208, 2011, doi: 10.1016/ j.biocontrol.2010.11.008.

 

[93] G. O. Locatelli, G. F. dos Santos, P. S. Botelho, C. L. L. Finkler, and L. A. Bueno, “Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life,” Biological Control, vol. 117, pp. 21–29, 2018, doi: 10.1016/j.biocontrol.2017.08.020.

 

[94] M. Tudi, H. D. Ruan, L. Wang, J. Lyu, R. Sadler, D. Connell, C. Chu, and D. T. Phung, “Agriculture development, pesticide application and its impact on the environment,” International Journal of Environmental Research and Public Health, vol. 18, no. 3, p. 1112, 2021, doi: 10.1371/journal. pone.0130081.

 

[95] R. Saputra, T. Arwiyanto, and A. Wibowo, “Antagonistic activity assay of some isolates of Bacillus spp. against Bacterial Wilt Diseases (Ralstonia solanacearum) in some varieties of tomato and its identification,” Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, vol. 1, pp. 1116–1122, 2015, doi: 10.13057/ psnmbi/m010525.

 

[96] V. Silva, H. G. J. Mol, P. Zomer, M. Tienstra, C. J. Ritsema, and V. Geissen, “Pesticide residues in European agricultural soils - A hidden reality Unfolded,” Science of The Total Environment, vol. 653, pp. 1532–1545, 2019, doi: 10.1016/j. scitotenv.2018.10.441.

 

[97] P. Anubrata and D. Rajendra, “Isolation, characterization, production of bio-fertilizer and its effect on vegetable plants with and without carrier materials,” International Journal of Current Research, vol. 6, pp. 7986–7995, 2014.

 

[98] S. Kumar, M. Thakur, and A. Rani, “Trichoderma: Mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases,” African Journal of Agricultural Research, vol. 9, no. 53, pp. 3838–3852, 2014.

 

[99] S. Nakkeeran, P. Renukadevi, and T. Marimuthu, “Antagonistic potentiality of Trichoderma viride and assessment of its efficacy for the management of cotton root rot,” Archives of Phytopathology and Plant Protection, vol. 38, no. 3, pp. 209–225, 2005, doi: 10.1080/03235400500094472.

 

[100] A. Amira and W. M. W. Yusoff, and R. Abdullah, “Production of biofertilizer from palm oil mill effluent and empty fruit bunches using effective microorganisms” BioResources, vol. 6, no. 4, pp. 4575–4588, 2011.

 

[101] A. K. Sharma, R. K. Singh, S. Sharma, and and S. Sharma, “Biofertilizers: A sustainable eco-friendly agricultural approach for crop improvement,” in Bacterial Metabolites in Sustainable Agroecosystem. New York: Springer, 2012, pp. 187–211.

 

[102] Forum for Nuclear Cooperation in Asia, Biofertilizer Manual. Tokyo, Japan: Japan Atomic Industrial Forum, 2006, pp. 1–138.

 

[103] M. H. Dar, N. Singh, G. H. Dar, S. S. Mahdi, S. M. Ravzi, and R. Groach, “Biofertilizer means of increasing sustainable crop production and ecofriendly,” Journal of Life Science Leaflets, vol. 49, pp. 101–115, 2014.

 

[104] M. L. Gupta, “Vesicular arbuscular mycorrhizal (VAM) technology for crop improvement: progress and prospects,” Agrobios Newsletter, vol. 1, no. 1, pp. 1–6, 2004.

 

[105] U. B. Singh, R. P. Singh, T. Prasad, and D. P. Singh, “Biocontrol potential of Trichoderma harzianum against Fusarium oxysporum f. sp. lycopersici the causal agent of tomato wilt,” Biological Control, vol. 98, pp. 59–67, 2016.

 

[106] S. A. Khan, M. Hamayun, B. Ahmad, N. A. Yasin, and F. Y. Hafeez, “Potassium solubilizing bacteria (KSB): Mechanism and role in agriculture sector,” International Journal of Agriculture and Biology, vol. 23, no. 2, pp. 285–292, 2019.

 

[107] N. Akhtar, T. Yasmeen, S. Akhtar, K. Nawaz, S. Iqbal, and B. Muneer, “Potassium solubilizing bacteria mitigate drought stress in maize (Zea mays L.) by enhancing growth and yield,” Scientia Horticulturae, vol. 280, p. 109988, 2021.

 

[108] H. Yadav, R. Shukla, M. Kumar, and A. Singh, “Phosphate solubilizing bacteria-mediated nutrient management for improving soil fertility and sustainable agriculture: A review,” Frontiers in Sustainable Food Systems, vol. 5, p. 69, 2021.

 

[109] A Sahu, A. Singh, S. Singh, and B. Singh, “Effect of phosphate solubilizing bacteria on phosphorus availability and growth of wheat (Triticum aestivum L.) in a vertisol,” Communications in Soil Science and Plant Analysis, vol. 50, no. 18, pp. 2246–2262, 2019.

 

[110] A. Singh, M. Shahid, M. Srivastava, S. Pandey, A. Sharma, and V. Kumar, “Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation,” Virology and Mycology, vol. 3, 2013. doi: 10.4172/2161-0517.1000127.

 

[111] R. Jeyarajan and S. Nakkeeran, “Exploitation of microorganisms and viruses as biocontrol agents for crop disease management,” in Biocontrol Potential and their Exploitation in Sustainable Agriculture, Boston, MA: Springer, pp. 95–116, 2000, doi: 10.1007/978-1-4615- 4209-4_8.

 

[112] N. Ladumor and B. Singh, “Talc-based formulation of Trichoderma viride, T. harzianum, T. virens, P. fluorescens, B. subtilis for seed biopriming: A sustainable approach for high quality seedling production,” Journal of Plant Growth Regulation, vol. 41, no. 1, pp. 1–16, 2022, doi: 10.1007/s00344-021-10384-1.

 

[113] G. E. Harman, C. R. Howell, A. Viterbo, I. Chet, and M. Lorito, “Trichoderma species– opportunistic, avirulent plant symbionts,” Nature Reviews Microbiology, vol. 8, no. 9, pp. 563–574, 2010.

 

[114] H. A. Contreras-Cornejo, L. Macías-Rodríguez, and J. López-Bucio, “Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis,” Plant Physiology, vol. 167, no. 4, pp. 18–30, 2014.

 

[115] I. S. Sawant and S. D. Sawant, “A simple method for achieving high cfu of Trichoderma harzianum on organic wastes for field applications,” Indian Phytopathology, vol. 9, pp. 185–187, 1996.

 

[116] A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos, “Biotechnological potential of coffee pulp and coffee husk for Bioprocesses,” Biochemical Engineering Journal, vol. 6, pp. 153–162, 2000.

 

[117] R. C. M. Santin, T. A. Souza, L. F. Faria, and C. Delarmelina, “Soybean seed treatment with Trichoderma harzianum and coffee husk for the management of Fusarium virguliforme,” Biological Control, vol. 114, pp. 33–40, 2017.

 

[118] L. R. Ferreira, T. W. L. de Almeida, D. M. Ribeiro, R. M. de Souza, J. A. de Jesus, and F. M. S. Moreira, “Coffee husk as a substrate for the production of Trichoderma viride and its application as a biopriming agent for maize seeds,” Biological Control, vol. 119, pp. 30–36, 2018.

 

[119] J. A. Lewis and G. C. Papavizas, “Production of chlamydospores and conidia by Trichoderma spp in liquid and solid growth media,” Soil Biology and Biochemistry, vol. 15, pp. 351–357, 1983, doi: 10.1016/0038-0717(83)90083-4.

 

[120] K. Anitha, R. Vijayabharathi, A. Sathya, S. Gopalakrishnan, and P. Panneerselvam, “Evaluation of vermiculite–wheat bran-based formulation of Trichoderma viride for its efficacy on potato late blight,” Biological Control, vol. 131, pp. 1–9, 2019.

 

[121] C. Balasubramanian, P. Udaysoorian, C. Prabhu, and G. S. Kumar, “Enriched compost for yield and quality enhancement in sugarcane,” Journal of Ecobiology, vol. 22, pp. 173–176, 2008.

 

[122] S. Kiran, A. Zehra, N. K. Arora, and Y. Kim, “Plant growth-promoting rhizobacteria-mediated improved shelf life and viability of plant seeds: A sustainable approach,” Frontiers in Microbiology, vol. 12, p. 663736, 2021.

 

[123] S. Sharma, C. S. Patil, and D. Shankhdhar, “Plant growth-promoting rhizobacteria-mediated induced systemic resistance in tomato against Fusarium wilt disease,” Biological Control, vol. 135, pp. 104–113, 2019.

 

[124] Y. K. Rathore, J. Singh, R. Pandey, A. K. Singh, and H. B. Singh, “Plant growth promoting rhizobacteria (PGPR) as biocontrol agents against root knot nematodes in tomato plants,” Plants, vol. 10, no. 2, p. 226, 2021.

 

[125] F. Doni, I. Anizan, C. M. Z. C. Radziah, A. H. Salman, M. H. Rodzihan, and W. M. W. Yusoff, “Enhancement of rice seed germination and vigour by Trichoderma spp,” Research Journal of Applied Science, Engineering and Technology, vol. 7, no. 21, pp. 4547–4552, 2014, doi: 10.19026/rjaset.7.832.

 

[126] G. C. Papavizas, M. T. Dunn, J. A. Lewis, and J. E. Beagle-Ristaino, “Liquid fermentation technology for experimental production of biocontrol fungi,” Phytopathology, vol. 74, p. 1171, 1984.

 

[127] X. Jin, G. E. Harman, and A. G. Taylor, “Conidial biomass and desiccation tolerance of Trichoderma harzianum produced at different medium water potentials,” Biological Control, vol. 7, pp. 243–267, 1991.

 

[128] G. E. Harman, X. Jin, T. E. Stasz, G. Peruzzotti, A. C. Leopold, and A. G. Taylor Production of conidial biomass of Trichoderma harzianum for biological control,” Biological Control, vol. 1, pp. 23–28, 1991.

 

[129] E. Agosin, D. Volpe, G. Mun~oz, R. San Martin, and A. Crawford, “Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum,” World Journal of Microbiology and Biotechnology, vol. 7, no. 13, pp. 225–232, 1997.

 

[130] R. D. Prasad, R. Rangeshwaran, C. P. Anuroop, and P. R. Phanikumar, “Bioefficacy and shelf life of conidial and chlamydospore formulations of Trichoderma harzianum Rifai,” Journal of Biological Control, vol. 16, pp. 145–148, 2002.

 

[131] B. C. Das, B. K. Das, P. Dutta, and D. K. Sarmah, “Bioformulation of Trichoderma harzianum rifai for management of soybean stem-rot caused by Rhizoctonia solani kuhn,” Journal of Biological Control, vol. 20, pp. 57–64, 2006.

 

[132] P. B. Parab, M. P. Diwakar, U. K. Sawant, and J. J. Kadam, “Studies on mass multiplication, different methods of application of bioagent T. harzianum and their survival in rhizosphere and soil,” Journal of Plant Disease Science, vol. 3, pp. 215–218, 2008.

 

[133] A. Katayama and F. Matsumura, “Degradation of organochlorine pesticides, particularly endosulfan, Trichoderma harzianum,” Environmental Toxicology and Chemistry, vol. 12, pp. 1059–1065, 1993, doi: 10.1002/ etc.5620120612.

 

[134] P. P. Choudhury, A. Singh, and R. Singh, “Biodegradation of topramezone by a Trichoderma isolate in soil,” Weeds – Journal of the Asian- Pacific Weed Science Society, vol. 1, no. 1, pp. 43–54, 2019.

 

[135] M. A. Rifai, “A revision of the genus,” Trichoderma Mycological Papers, vol. 116, pp. 1–56, 1969.

 

[136] W. M. Jaklitsch and H. Voglmayr, “Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia,” Studies in Mycology, vol. 80, pp. 1–87, 2015.

 

[137] R. Hermosa, A. Viterbo, I. Chet, and E. Monte, “Plant-beneficial effects of Trichoderma and of its genes,” Microbiology, vol. 158, pp. 17–25, 2012.

 

[138] K. Sathiyaseelan, P. Sivasakthivelan, and G. Lenin, “Evaluation of antagonistic activity and shelf-life study of Trichoderma viride,” Botanical Research International, vol. 2, no. 3, pp. 195–197, 2009.

 

[139] G. E. Harman, “Overview of mechanisms and uses of Trichoderma spp,” Phytopathology, vol. 96, no. 2, pp. 190–194, 2006.

 

[140] F. Mastouri, T. Bjorkman, and G. E. Harman, “Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings,” Phytopathology, vol. 100, no. 11, pp. 1213– 1221, 2010.

 

[141] R. K. Kamal, V. Athisayam, Y. S. Gusain, and V. Kumar, “Trichoderma: A most common biofertilizer with multiple roles in agriculture,” Biomedical Journal of Scientific and Technical Research, vol. 4, no. 5, 2018, doi: 10.26717/ BJSTR.2018.04.001107.

 

[142] X. Wang, S. Xu, S. Wu, S. Feng, Z. Bai, G. Zhuang, and X. Zhuang, “Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China,” Journal of Enviromental Science, pp. 1–9, 2017, doi: 10.1016/j.jes.2017.05.016

 

[143] S. Zeilinger, S. Gruber, R. Bansal, and P. K. Mukherjee, “Secondary metabolism in Trichoderma-Chemistry meets genomics,” Fungal Biology Reviews, vol. 30, no. 2, pp. 74– 90, 2016, doi: 10.1016/j.fbr.2016.05.001.

 

[144] R. A. A. Khan, S. Najeeb, S. Hussain, B. Xie, and Y. Li, “Bioactive secondary metabolites from Trichoderma species against phytopathogenic fungi,” Microorganisms, vol. 8, no. 6, p. 817, 2020, doi: 10.3390/microorganisms8060817.

 

[145] Y. Elad, I. Chet, and Y. Henis, “Biological control of Rhizoctonia solani in strawberry fields by Trichoderma harzianum,” Plant and Soil, vol. 60, pp. 245–254, 2006.

 

[146] A. Mushtaq and R. S. Upadhyay, “Effect of Soil Amendment with Trichoderma harzianum, chemicals and wilt pathogen on growth and yield of tomato,” Journal of Plant Pathology, vol. 41, no. 1, pp. 77–81, 2011.

 

[147] A. Rasool, H. Behzad, and G. Abolfazl, “Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake,” Afican Journal of Biotechnology, vol. 10, no. 31, pp. 5850–5855, 2011.

 

[148] L. Hoyos-Carvajal, S. Ordua, and J. Bissett, “Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma,” Biological Control, vol. 51, pp. 409–416, 2019.

 

[149] C. G. M. Banaay and A. C. Virginia, “Application of Trichoderma in vegetable production for early harvesting,” International Journal of Agriculture and Biology, vol. 27, no. 1, pp. 145–150, 2022.

 

[150] U. P. Singh, R. Prasad, S. K. Singh, A. Kumar and M. Kumar, “Market cost of Trichoderma spp. bioformulations in India,” Journal of Crop Protection, vol. 150, p. 105597, 2021.

 

[151] R. Kumar, M. Singh, and V. Kumar, “Potassium solubilizing bacteria: A comprehensive review,” Journal of Pure and Applied Microbiology, vol. 15, no. 1, pp. 244–25, 2021.

 

[152] J. Mercado-Blanco, I. Abrantes, and A. Barra Caracciolo, “Beneficial microbes for phosphate mobilization and uptake from soil,” in Microbial Models: From Environmental to Industrial Sustainability.Cham: Springer, pp. 147–168, 2018.

 

[153] H. Yuan, W. Wang, Z. Wang, H. Gao, C. Zhang, Y. Tian, Y. Sun, P. Wang, F. Liu, and J. Zhang, “Exposure to soil contamination with insecticides and reproductive outcomes among women in rural areas of Northern China,” Environmental Research, vol. 173, pp. 230– 237, 2019.

 

[154] Y. Li, Y. Xu, Y. Liang, X. Li, and L. Chen, “Soil contamination with imidacloprid affects microbial diversity and promotes community shifts,” Frontiers in Microbiology, vol. 10, p. 2931, 2019.

 

[155] X. Qian, M. Zhang, J. Cao, X. Wang, Z. Zhang, and Z. Zhao, “Repeated applications of insecticides lead to the outbreak of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) and bacterial disease in rice (Oryza sativa L.),” Pest Management Science, vol. 77, no. 3, pp. 1447–1458, 2021.

 

[156] L. Soesanto, R. A. Susanti, E. Mugiastuti, A. Manan, M. W. R. Sastyawan, and J. Maryanto, “Remediation of chlorpyrifos-contaminated soils by crude secondary metabolites of Trichoderma harzianum T213 and its effect on maize growth,” Biodiversitas, vol. 23, 2464– 2470, 2022, doi: 10.13057/biodiv/d230526.

 

[157] S. H. Peerzada, K. A. Bhat, and H. S. Viswanath, “Studies on management of late blight (Phytophthora infestans (Mont) deBary) of potato using organic soil amendments,” International Journal of Current Microbiology and Applied Sciences, vol. 9, no. 2, pp. 2093– 2099, 2020.

 

[158] T. Benítez, A. Rincón, M. C. Limón, and A. C. Codón, “Biocontrol mechanisms of Trichoderma strains,” International Microbiology, vol. 7, pp. 249–260, 2004.

 

[159] S. Halifu, X. Deng, X. Song, and R. Song, “Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings,” Forests, vol. 10, p. 758, 2019, doi: 10.3390/f10090758.

 

[160] R. X. Li, F. Cai, G. Pang, Q. R. Shen, L. Rong, and W. Chen, “Solubilization of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth,” PLoS ONE, vol. 10, no. 6, 2015, doi: 10.1371/journal.pone.0130081.

 

[161] L. Gianfreda, “Enzymes of importance to rhizosphere processes,” Journal of Soil Science and Plant Nutrition, vol. 15, no. 2, pp. 283–306, 2015, doi: 10.4067/S0718- 95162015005000022.

 

[162] A. T. Adetunji, F. B. Lewu, and K. F. Trollope, “Trichoderma species: Versatile plant symbionts for plant growth promotion and sustainable yield,” African Journal of Microbiology Research, vol. 11, no. 3, pp. 57–71, 2017.

 

[163] M. Sood, D. Kapoor, V. Kumar, M. S. Sheteiwy, M. Ramakrishnan, M. Landi, F. Araniti, and F. Sharma, “Trichoderma: The ‘secrets’ of a multitalented biocontrol agent,” Plants (Basel), vol. 9, no. 6, p. 762, 2020. doi: 10.3390/plants9060762.

 

[164] V. Aishwarya, M. Kavino, and S. Harish, “Trichoderma harzianum: A biocontrol agent for sustainable agriculture,” in Biomanagement of Soil Ecosystems. Singapore: Springer, pp. 99–116, 2020.

 

[165] M. L. Brenner, “Modern methods for plant growth substance analysis,” Annual Review of Plant Physiology, vol. 32, no. 1, pp. 511–538, 2003, doi: 10.1146/annurev.pp.32.060181. 002455.

 

[166] J. Jaroszuk-Ściseł, R. Tyśkiewicz, A. Nowak, E. Ozimek, M. Majewska, A. Hanaka, K. Tyśkiewicz, A. Pawlik, and G. Janusz, “Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia,” International Journal of Molecular Scences, vol. 20, no. 19, p. 4923, 2019, doi: 10.3390/ijms20194923.

 

[167] D. Sivakumar, R. S. Wijeratne, R. L. Wijesundera, F. M. Marikar, and M. Abeyesekere, “Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum),” Phytoparasitica, vol. 28, pp. 240–247, 2000.

 

[168] A. Gallou, S. Cranenbrouck, and S. Declerck, “Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani,” European Journal of Plant Pathology, vol. 124, pp. 219–230, 2008.

 

[169] F. Doni, A. Isahak, S. R. Syed Omar, S. Ahmad, K. Sijam, and W. M. W. Yusoff, “Trichoderma harzianum enhanced the growth, physiological and biochemical traits of rice (Oryza sativa L.) under gnotobiotic greenhouse conditions,” Journal of Plant Interactions, vol. 12, no. 1, pp. 209–219, 2017.

 

[170] F. Doni, A. Isahak, C. R. C. M. Zain, S. M. Ariffin, W. N. W. Mohamad, and W. M. W. Yusoff “Formulation of Trichoderma sp. SL2 inoculants using different carriers for soil treatment in rice seedling growth,” Springer Plus, vol. 3, p. 532, 2014, doi: 10.1186/2193-1801-3-532.

 

[171] A. H. Molla, M. M. Haque, M. A. Haque, and G. N. M. Ilias, “Trichoderma- enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use,” Agricultural Research, vol. 1, no. 3, pp. 265–272, 2012.

 

[172] A. Kumar, A. Patel, S. Singh, and R. Tiwari, “Effect of Trichoderma spp. in plant growth promotion in Chilli,” International Journal of Current Microbiology and Applied Sciences, vol. 8, no. 3, pp. 1574–1581, 2019.

 

[173] Y. Brotman, U. Landau, Á. Cuadros-Inostroza, T. Takayuki, A. R. Fernie, I. Chet, A. Viterbo, and L. Willmitzer, “Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance,” PLoS Pathogens, vol. 9, 2013, doi: 10.1371/journal. ppat.1003221.

 

[174] E. González-Pérez, M. A. Ortega-Amaro, F. B. Salazar-Badillo, E. Bautista, D. Douterlungne, and J. F. Jiménez-Bremont, “The arabidopsis- Trichoderma interaction reveals that the fungal growth medium is an important factor in plant growth induction,” Science, vol. 8, p. 16427, 2018.

 

[175] J. Poveda, R. Hermosa, E. Monte, and C. Nicolás, “The Trichoderma harzianum Kelch protein ThKEL1 plays a key role in root colonization and the induction of systemic defense in Brassicaceae plants,” Frontiers in Plant Science, vol. 10, p. 1478, 2019.

 

[176] J. Poveda, “Trichoderma parareesei favors the tolerance of rapeseed (Brassica napus L.) to salinity and drought due to a chorismite mutase,” Agronomy, vol. 10, p. 118, 2020.

 

[177] S. Zhang, Y. Gan, and B. Xu, “Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front,” Plant Science, vol. 7, p. 1405, 2016.

 

[178] R. Utkhede and C. Koch, “Biological treatments to control bacterial canker of greenhouse tomatoes,” Biocontrol, vol. 49, pp. 305–313, 2004.

 

[179] A. Ghorbanpour, A. Salimi, M. A. T. Ghanbary, H. Pirdashti, and A. Dehestani, “The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) Plants,” Scientia Horticulturae, vol. 230, pp. 134–141, 2018.

 

[180] S. A. Mona, A. Hashem, E. F. AbdAllah, A. A. Alqarawi, D. W. Soliman, S. Wirth, and D. Egamberdieva, “Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content,” Journal of Integrative Agriculture, vol. 16, pp. 1751–1757, 2017.

 

[181] Y. Wang, X. Hou, J. Deng, Z. Yao, M. Lyu, and R. Zhang, “Auxin response factor 1 acts as a positive regulator in the response of poplar to Trichoderma asperellum inoculation in overexpressing plants,” Plants, vol. 9, p. 272, 2020.

 

[182] J. Poveda, “Biological control of Fusarium oxysporum f. sp. ciceri and Ascochyta rabiei infecting protected geographical indication Fuentesaúco-Chickpea by Trichoderma species,” European Journal of Plant Pathology, vol. 160, pp. 825–840, 2021.

 

[183] N. Shukla, R. P. Awasthi, L. Rawat, and J. Kumar, “Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress,” Plant Physiology and Biochemistry, vol. 54, pp. 78–88, 2012.

 

[184] P. P. Jambhulkar, P. Sharma, R. Manokaran, D. K. Lakshman, P. Rokadia, and N. Jambhulkar, “Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice,” European Journal of Plant Pathology, vol. 152, pp. 747–757, 2018.

 

[185] N. S. Guler, I. I. Ozyigit, E. Filiz, and I. Koc, “Effects of Trichoderma harzianum on maize growth parameters and root morphology under drought stress,” Turkish Journal of Agriculture and Forestry, vol. 40, no.1, pp. 85–94, 2016.

 

[186] M. Haque, A. H. G. N. M. Ilias, and A. H. Molla, “Trichoderma-Enriched Biofertilizer: A prospective substitute of inorganic fertilizer for mustard (Brassica campestris) production,” vol. 8, no. 2, pp. 66–73, 2011.

 

[187] S. Topolovec-Pintaric, I. Zutic, and E. Dermic, “Enhanced growth of cabbage and red beet by Trichoderma viride,” Acta Agriculturae Slovenica, vol. 101, no. 1, 87–92, 2013.

 

[188] S. Mahato, S. Bhuju, and J. Shrestha, “Effect of Trichoderma viride as biofertilizer on growth and yield of wheat,” Malaysian Journal of Sustainable Agriculture, vol. 2, no. 2, pp. 1–5, 2018.

 

[189] P. Susiana, P. Achmadi, P. S. Retno, S. K. Rina, and B. Kadarwati, “The resistance of potatoes by application of Trichoderma viride Antagonists Fungus,” in The 3rd International Conference on Energy, Environmental, and Information System (ICENIS 2018), 2018, vol. 73 Art. no. 06014, doi: 10.1051/e3sconf/20187306014.

 

[190] F. T. Ghasemkheyli, H. Pirdashti, M. A. Bahmanyar, and M. A. T. Ghanbary, “The effect of Trichoderma harzianum and cadmium on tolerance index and yield of barley (Hordeum Vulgare L.),” Journal of Crop Ecophysiology and Agricultural Science, vol. 8, no. 4, pp. 465–481, 2015.

 

[191] X. Gu, W. Chen, F. Cai, G. Pang, and R. Li, “Effect of Trichoderma biofertilizer on continuous cropping cucumber cultivation with reduced rates of chemical fertilizer application,” Acta Pedological Sinica, vol. 53, no. 5, pp. 1296– 1305, 2016.

 

[192] U. S. Singh, N. W. Zaide, D. Joshi, S. Vashney, and T. Khan, “Current status of Trichoderma spp for the biological control of plant diseases,” in Microbial Biopesticides: Formulations and Application. Bangalore, India: Project Directorate of Biological Control, pp. 13–48, 2006.

 

[193] R. Waghunde, R. Shelake, and A. Sabalpara, “Trichoderma: A significant fungus for agriculture and environment,” African Journal of Agricultural Research, vol. 11, 1952–1965, 2016, doi: 10.5897/AJAR2015.10584.

 

[194] R. Kumar, R. Singh, R. Sharma, and K. Bhatt, “Solid-state and liquid-state fermentation for mass production of Trichoderma spp. using different agro-industrial wastes,” Journal of Genetic Engineering and Biotechnology, vol. 12, no. 1, pp. 39–46, 2014.

 

[195] M. Hassan, “Enhance suppressive effect of compost on soybean rhizoctonia root rot by soil treatment with Trichoderma harzianum,” Journal of Plant Physiology and Pathology, vol. 2, no. 2, pp. 1–6, 2014.

 

[196] A. Elzein, J. Kroshel, D. Mueller-Stoever, “Effects of inoculum type and propagules, concentration on shelf life of pasta formulations containing Fusarium oxysporum Foxy2, a potential myco-herbicide agent for Striga spp,” Biological Control, vol. 30, pp. 203–211, 2004.

 

[197] T. J. Friesen, G. Holloway, G. A. Hill, and T. S. Pugsley, “Effect of conditions and protectants on the survival of Penicillium bilaiae during storage,” Biocontrol Science and Technology, vol. 16, pp. 89–98, 2006.

 

[198] S. Sriram, K. P. Roop, and M. J. Savitha, “Extended shelf-life of liquid fermentation derived talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium,” Crop Protection, vol. 30, pp. 1334–1339, 2011.

 

[199] L. Kredics, Z. Antal, and L. Manczinger, “Influence of water potential on growth, enzyme secretion and in vitro enzyme activities of Trichoderma harzianum at different temperatures,” Current Microbiology, vol. 40, pp. 310–314, 2000.

 

[200] D. Bhagat, M. Koche, R. W. Ingle, and Y. N. Mohod, “Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria,” Journal of Plant Disease Sciences, vol. 5, no. 1, pp. 27–29, 2010.

 

[201] K. T. Pramod and M. G. Palakshappa, “Evaluation of suitable substrates for on farm production of antagonist Trichoderma harzianum,” Karnataka Journal of Agriculture Science, vol. 22, pp. 115–117, 2009.

 

[202] K. B. Palanna, B. Palaiah, and M. Muthumilan, “Effect of manures on growth, sporulation and antifungal activity of Trichoderma viride,” Karnataka Journal of Agriculture Science, vol. 20, pp. 861–863, 2007.

 

[203] L. Tewari and C. Bhanu, “Evaluation of agro-industrial wastes for conidia bases inoculum production of bio-control agent: Trichoderma harzanium,” Journal of Scientific and Industrial Research, vol. 6, pp. 807–812, 2004.

 

[204] T. Sankar and R. Jeyarajan, “Shelf life of Trichoderma harzianum Rifai formulations,” Journal of Coffee Research, vol. 24, no. 1, pp. 37–42, 1996.

 

[205] A. I. Bhat, P. Chandra, and S. C. Dubey, “Shelf life of talc-based formulation of Trichoderma harzianum Rifai,” Journal of Plant Protection Research, vol. 49, no. 2, 192–196, 2009.

 

[206] G. Ramkrishnan, R. Jeyarajan, and D. Dinkaran, “Talc based formulation of Trichoderma viride for biocontrol of Macrophomina pheseolina,” Journal of Biological Control, vol. 8, pp. 41–44, 1994.

 

[207] T. Raguchander, K. Rajappan, and K. Prabakar, “Evaluation of talc-based product of Trichoderma viride for the control of blackgram root rot,” Jounral of Boiogical Control, vol. 9, no. 1, pp. 63–64, 1995.

 

[208] S. V. Sarode, V. R. Gupta, and M. N. Asalmol, “Suitability of carrier and shelf life of Trichoderma harzianum,” Indian Journal of Plant Protection, vol. 26, no. 2, pp. 188–189, 1998.

 

[209] K. A. Saju, M. Anandraj, and Y. R. Sharma, “On-farm production of Trichoderma harzianum using organic matter,” Indian Phytopathology, vol. 55 no. 3, pp. 277–281, 2002.

 

[210] R. Singh, P. Anbazhagan, H. S. Viswanath, and A. Tomer, “Trichoderma species: Blessing for crop production,” in Trichoderma: Agricultural Applications and Beyond. Cham: Springer, pp. 195–208, 2020.

 

[211] V. G. Rao and H. S. Viswanath, “Effect of different extracts of de-oiled cakes and organic manures on mycelial growth enhancement of Trichoderma harzianum in vitro,” Biological Forum–An International Journal, vol. 14, no. 2, pp. 1051–1055, 2022.

 

[212] P. Andrés, P. Alejandra, M. Benedicto, R. Nahuel, and B. Clara, “A comparative study of different strains of Trichoderm under different conditions of temperature and ph for the control of Rhizoctonia solani,” Agricultural Sciences, vol. 13, pp. 702–714, 2022, doi: 10.4236/ as.2022.136046.

 

[213] S. A. Karaoğlu, A. Bozdeveci, and N. Pehlivan, “Characterization of Local Trichoderma spp. as Potential Bio-Control Agents, Screening of in Vitro Antagonistic Activities and Fungicide Tolerance,” Hacettepe Journal of Biology and Chemistry, vol. 46, pp. 247–261, 2018, doi: 10.15671/HJBC.2018.233.

 

[214] H. A. Contreras-Cornejo, L. Macías-Rodríguez, E. del-Val, and J. Larsen, “Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere interactions with plants,” FEMS Microbiology Ecology, vol. 92, no. 4, 2016, doi: 10.1093/femsec/fiw036.

 

[215] I. S. Druzhinina, A. G. Kopchinskiy, and C. P. Kubicek, “The first 100 Trichoderma species characterized by molecular data,” Mycoscience, vol. 47, pp. 55–64, 2006, doi: 10.1007/s10267- 006-0279-7.

 

[216] P. K. Mukherjee, B. A. Horwitz, A. Herrera- Estrella, M. Schmoll, and C. M. Kenerley, “Trichoderma research in the genome era,” Annual Review of Phytopathology, vol. 51, pp. 105–129, 2013, doi: 10.1146/annurphyto 082712-102353.

 

[217] J. H. Brown, “On the relationship between abundance and distribution of species,” The American Naturalist, vol. 124, 255–279, 1984, doi: 10.1086/284267.

 

[218] P. Widden and V. Scattolin, “Competitive interactions and ecological strategies of Trichoderma species colonizing spruce litter,” Mycologia, vol. 80, no. 6, pp. 795–803, 1988, doi: 10.2307/3807557.

 

[219] R. S. Cavalcante, H. L. S. Lima, G. A. S. Pinto, C. A. T. Gava, and S. Rodrigues, “Effect of moisture on Trichoderma conidia production on corn and wheat bran by solid state fermentation,” Food Bioprocess Technology, vol. 1, pp. 100– 104, 2008, doi: 10.1007/s11947-007-0034.

 

[220] Y. Brotman, J. G. Kapuganti, and A. Viterbo, “Trichoderma,” Current Biology, vol. 20, no. 8, pp. 750–756, 2010, doi: 10.1016/j.cub. 2010.02.042R390–R391.

 

[221] M. F. Nieto-Jacobo, J. M. Steyaert, F. B. Salazar-Badillo, D. V. Nguyen, M. Rostás, M. Braithwaite, J. T. De Souza, J. F. Jimenez- Bremont, M. Okura, A. Stewart, and A. Mendoza-Mendoza, “Environmental growth conditions of Trichoderma spp. Affects indole acetic acid derivatives, volatile organic compounds, and plant growth Promotion,” Frontiers in Plant Science, vol. 8, 2017, doi: 10.3389/fpls.2017.00102.

 

[222] J. A. Lewis and G. C. Papavizas, “Effect of temperature on the germination and survival of Trichoderma chlamydosporium and other species of Trichoderma in soil,” Phytopathology, vol. 73, no. 10, pp. 1391–1397, 1983.

 

[223] K. F. Nielsen, T. Gräfenhan, D. Zafari, and U. Thrane, “Trichothecene production by Trichoderma brevicompactum,” Journal of Agricultural and Food Chemistry, vol. 53, pp. 8190–8196, 2005, doi: 10.1021/jf051279b.

 

[224] S. Anand and J. Reddy, “Biocontrol potential of Trichoderma sp. against plant Pathogens,” International Journal Agricultural Sciences, vol. 1, pp. 30–39, 2009, doi: 10.9735/0975- 3710.1.2.30-39.

 

[225] A. Hamzah, M. A. Zarin, A. A. Hamid, O. Omar, and S. Senafi, “Optimal physical and nutrient parameters for growth of Trichoderma virens UKMP-1M for heavy crude oil degradation,” Sains Malaysiana, vol. 41, pp. 71–79, 2012.

 

Full Text: PDF

DOI: 10.14416/j.asep.2023.07.001

Refbacks

  • There are currently no refbacks.