Health Risk Assessment of Gaseous Pollutants in the Ambient Environment of Rayong City, Thailand: The Initiative of the EEC Area
Abstract
The Eastern Economic Corridor (EEC) project initiative has an adverse impact on the increasing problem of air pollution. This research aims to determine ambient NO2, O3, and SO2 levels in the industrial area (IT) and urban area (UB) in Rayong city as part of a health risk assessment from 2018 to 2020. The average NO2, O3, and SO2 concentrations at IT site were ranged from 23.5–24.7 μg/m3, 42.7–56.7 μg/m3, and 12.5–14.0 μg/m3, while those at UB site were 14.8–20.7 μg/m3, 42.5–68.3 μg/m3, and 3.2–4.7 μg/m3, respectively. Their concentrations in dry season were higher than those in wet season at both IT and UB sites. The days in the IT site exceeded the daily WHO guideline of NO2 was 34.8–44.0%, while those in the UB site were 10.8–34.5%. The hazard quotient (HQ) values for a non-carcinogenic risk to human health caused by NO2 exposure indicated a medium hazard (HQ = 1.1–10.0), whereas the HQ values for SO2 and O3 indicated a negligible risk (HQ < 1.0). The total non-carcinogenic risk (HI) from air pollutants contamination being exposed concurrently, on the other hand, indicated risk levels that are likely to affect health, particularly children. Therefore, environmental management and protection in Rayong city are important for people who live in industrial and urban areas, especially during dry period.
Keywords
[1] World Health Organization. “WHO global air quality guidelines,” 2021. Bonn, Germany: WHO.
[2] J. M. Gaffin, M. Hauptman, C. R. Petty, W. J. Sheehan, P. S. Lai, J. M. Wolfson, D. R. Gold, and B. A. Coull, “Nitrogen dioxide exposure in school classrooms of inner-city children with asthma,” Journal of Allergy and Clinical Immunology, vol. 141, pp. 2249–2255, Jun. 2018, doi: 10.1016/j.jaci.2017.08.028.
[3] D. Norbäck, J. H. Hashim, Z. Hashim, and F. Ali, “Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue,” Science of The Total Environment, vol. 592, pp. 153–160, Aug. 2017, doi: 10.1016/j. scitotenv.2017.02.215.
[4] G. B. Hamra, F. Laden, A. J. Cohen, O. Raaschou- Nielsen, M. Brauer, and D. Loomis, “Lung cancer and exposure to nitrogen dioxide and traffic: A systematic review and meta-analysis,” Environmental Health Perspectives, vol. 123, pp. 1107–1112, Nov. 2015, doi: 10.1289/ ehp.1408882.
[5] M. C. Nwosisi, O. Oguntoke, A. M. Taiwo, I. E. Agbozu, and E. J. Noragbon, “Spatial patterns of gas flaring stations and the risk to the respiratory and dermal health of residents of the Niger Delta, Nigeria,” Scientific African, vol. 12, Jul. 2021, Art. no. e00762, doi: 10.1016/j.sciaf. 2021.e00762.
[6] I. Y. Henández-Paniagua, R. Lopez-Farias, J. J. Piña-Mondragón, J. A. Pichardo-Corpus, O. Delgadillo-Ruiz, A. Flores-Torres, A. Garcia- Reynoso, L. G. Ruiz-Suárez, and A. Mendoza, “Increasing weekend effect in ground-level O3 in metropolitan areas of Mexico during 1988-2016,” Sustainability, vol. 10, Sep. 2018, Art. no. 3330, doi: 10.3390/su10093330.
[7] R. Kumar, M. Sharma, A. Srivastva, J. S. Thakur, S. K. Jindal, and H. K. Parwana, “Association of outdoor air pollution with chronic respiratory morbidity in an industrial town in Northern India,” Archives of Environmental Health, vol. 59, pp. 471–477, Sep. 2004, doi: 10.1080/ 00039890409603428.
[8] J. Coll, Air Pollution. New York: Spon Press, 2002, pp. 29–59.
[9] W. E. Wilson Jr, A. Levy, and D. B. Wimmer, “A study of sulfur dioxide in photochemical smog,” Journal of the Air Pollution Control Association, vol. 22, pp. 27–32, Mar. 2012, doi: 10.1080/00022470.1972.10469605.
[10] U. F. Platt, A. M. Winer, H. W. Blermann, R. Atkinson, and J. N. Pitts Jr, “Measurement of nitrate radical concentrations in continental air,” Environmental Science & Technology, vol. 18, pp. 365–369, May 1984.
[11] T. C. Adebayo-Ojo, J. Wichmann, O. O. Arowosegbe, N. Probst-Hensch, C. Schindler, and N. Künzli, “Short-term effects of PM10, NO2, SO2, and O3 on cario-respiratory mortality in Cape Town, South Africa, 2006–2015,” International Journal of Environmental Research and Poblic Health, vol. 19, Jun. 2022, Art. no. 8078, doi: 10.3390/ ijerph19138078.
[12] Y. Chen, Y. Bai, H. Liu, J. M. Alatalo, and B. Jiang, “Temporal variations in ambient air quality indicators in Shanghai municipality, China,” Scientific Reports, vol. 10, Jul. 2020, Art. no. 11350, doi: 10.1038/s41598-020-68201-0.
[13] M. Al-Harbi, A. Al-majed, and A. Abahussain, “Spatiotemporal variations and source apportionment of NOX, SO2, and O3 emissions around heavily industrial locality,” Environmental Engineering Rearch, vol. 25, no. 2, pp. 147–162, Mar. 2020, doi: 10.4491/eer.2018.414.
[14] A. O. Olufemi, A. Mji, and M. Mukhola, “Health risks of exposure to air pollutants among students in schools in the vicinities of coal mines,” Energy Exploration & Exploitation, vol. 37, pp. 1638–1656, Nov. 2019, doi: 10.1177/ 0144598718765489.
[15] S. Roy, S. K. Gupta, J. Prakash, G. Habib, K. Baudh, and M. Nasr, “Ecological and human health risk assessment of heavy metal contamination in road dust in the National Capital Territory (NCT) of Delhi, India,” Environmental Science and Pollution Research, vol. 26, pp. 30413–30425, Aug. 2019, doi: 10.1007/s11356-019-06216-5.
[16] S. Hama, P. Kumar, M. S. Alam, D. J. Rooney, W. J. Bloss, Z. Shi, R. M. Harrison, L. R. Crilley, M. Khare, and S. K. Gupta, “Chemical source profiles of fine particles for five different sources in Delhi,” Chemosphere, vol. 274, Feb. 2021, Art. no. 129913, doi: 10.1016/j.chemosphere. 2021.129913.
[17] S. Roy, S. K. Gupta, J. Prakash, G. Habib, and P. Kumar, “A global perspective of the current state of heavy metal contamination in road dust,” Environmental Science and Pollution Research, vol. 29, pp. 33230–33251, Jan. 2022, doi: 10.1007/s11356-022-18583-7.
[18] R. Cichowicz and A. Stelegowski, “Selected air pollutants in urban and rural areas, under the influence of power plants,” Acta Innovations, vol. 41, pp. 41–52, Oct. 2018, no. 29.
[19] International Agency for Research on Cancer (IARC), Outdoor Air Pollution. France: Lyon Cedex, vol. 109, 2016, p. 454.
[20] Y. Guo, H. Zeng, R. Zheng, S. Li, A. G. Barnett, S. Zhang, X. Zou, R. Huxley, W. Chen, and G. William, “The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis,” Environmental Research, vol. 144, pp. 60–65, Jan. 2016, doi: 10.1016/j.envres.2015.11.004.
[21] D. F. Xing, C. D. Xu, X. Y. Liao, T. Y. Xing, S. P. Cheng, M. G. Hu, and J. X. Wang, “Spatial association between outdoor air pollution and lung cancer incidence in China,” BMC Public Health, vol. 19, Oct. 2019, Art. no. 1377, doi: 10.1186/s12889-019-7740-y.
[22] Department of Industrial Works (DIW), 2021. [Online]. Available: reg.diw.go.th/executive/ Prov3.asp?prov=21
[23] Eastern Economic Corridor (EEC), 2019. [Online]. Available: https://www.eeco.or.th/en
[24] EPA, “Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual, US-EPA/540/1-89/002, 2009.
[25] S. Prasertsin and G. Nathapindhu, “The temporal pattern of ambient PM2.5 and health risk assessment in Thailand,” Indian Journal of Public Health Research & Development, vol. 11, pp. 1096–1100, Mar. 2020, doi: 10.37506/ijphrd. v11i3.1546.
[26] A. D. Lemly, “Evaluation of the hazard quotient method for risk assessment of Selenium,” Ecotoxicology and Environmental Safety, vol. 35, pp. 156–162, Nov. 1996, doi: 10.1006/ eesa.1996.0095.
[27] N. D. L. Thabethe, J. C. Engelbrecht, C. Y. Wright, and M. A. Oosthuizen, “Human health risks posed by exposure to PM10 for four life stages in a low socio-economic community in South Africa,” The Pan African Medical Journal, vol. 18, pp. 1–12, Jul. 2014, doi: 10.11604/ pamj.2014.18.206.3393.
[28] A. Hamastia, E. Hermawati, R. Marina, and R. Andrian, “Estimated analysis on environmental health risk of 2.5 microns particulate matter to urban communities in South Jakarta,” Indian Journal of Public Health Research & Development, vol. 10, pp. 332–337, Feb. 2019, doi: 10.5958/ 0976-5506.2019.00311.5.
[29] A. Gruszecka-Kosowska, “Assessment of the Kraków inhabitants’health risk caused by the exposure to inhalation of outdoor air contaminants,” Stochastic Environmental Research and Risk Assessment, vol. 32, pp. 485–499, Feb. 2018, doi: 10.1007/s00477-016-1366-8.
[30] G. Feuyit, S. Nzali, J. Ngolui Lambi, and S. Laminsi, “Air quality and human health risk assessment in the residential areas at the proximity of the Nkolfoulou landfill in Yaoundé metropolis, Cameroon,” Journal of Chemistry, pp. 1–9, Jul. 2019, doi: 10.1155/2019/3021894.
[31] T. A. Mukta, M. M. M. Hoque, M. E. Sarker, M. N. Hossain, G. K. Biswas, “Seasonal variations of gaseous air pollutants (SO2, NO2, O3, CO) and particulates (PM2.5, PM10) in Gazipur: An industrial city in Bangladesh,” Advances in Environmental Technology, vol. 4, pp. 195–209, Oct. 2020, doi: 10.22104/AET.2021.4890.1320.
[32] L. Khamyingkert and S. Thepanondh, “Analysis of industrial source contribution to ambient air concentration using AERMOD dispersion model,” Environment Asia, vol. 9, pp. 28–36, Jan. 2016, doi: 10.14456/ea.1473.4.
[33] M. C. Nwosisi, O. Oguntoke, and A. M. Taiwo, “Dispersion and emission patterns of NO2 from gas flaring stations in the Niger Delta, Nigeria. Model,” Earth Systems and Environment, vol. 6, pp. 73–84, Mar. 2020, doi: 10.1007/s40808-019- 00658-z. [34] E. P. Olaguer, “Urban and regional ozone,” in Atmospheric Impacts of the Oil and Gas Industry. Amsterdam, Netherlands: Elsevier, 2017, pp. 31–45.
[35] Z. S. Venter, K. Aunan, S. Chowdhury, and J. Lelieveld, “COVID-19 lockdowns cause global air pollution declines,” in Proceedings of the National Academy of Sciences (PNAS), 2020, pp. 18984–18990.
[36] P. Wetchayont, “Investigation on the impacts of COVID-19 lockdown and influencing factors on air quality in greater Bangkok, Thailand,” Advances in Meteorology, Feb. 2021, doi: 10.1155/2021/6697707.
[37] K. Xiao, Y. Wang, G. Wu, B. Fu, and Y. Zhu, “Spatiotemporal characteristics of air pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the Inland Basin city of Chengdu, Southwest China,” Atmosphere, vol. 9, pp. 1–16, Feb. 2018, doi: 10.3390/atmos9020074.
[38] J. Csavina, J. Field, O. Félix, A. Y. Corral- Avitia, A. Eduardo Sáez, and E. A. Betterton, “Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates,” Science of The Total Environment, vol. 487, pp. 82–90, Jul. 2014, doi: 10.1016/j. scitotenv.2014.03.138.
[39] O. M. Morakinyo, A. S. Adebowale, M. I. Mokgobu, and M. S. Mukhola, “Health risk of inhalation exposure to sub-10 μm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: An ecological study,” BMJ Open, vol. 7, Mar. 2017, Art. no. e013941, doi: 10.1136/ bmjopen-2016-013941.
[40] A. Tarassoli, A. E. Sari, and N. Bahramifar, “Investigation of gaseous pollutants in residentialindustrial area: Ambient levels, temporal variation and health risk assessment,” Journal of Health and Pollution, vol. 4, pp. 121–132, Jul. 2019, doi: 10.18502/japh.v4i2.1236.
[41] F. Cibella, G. Cuttitta, R. D. Maggiore, S. Ruggieri, S. Panunzi, A. D. Gaetana, S. Bucchieri, G. Drago, M. R. Melis, S. L. Grutta, and G. Viegi, “Effect of indoor nitrogen dioxide on lung function in urban environment,” Environmental Research, vol. 138, pp. 8–16, Apr. 2015, doi: 10.1016/j. envres.2015.01.023.
[42] Z. Zhang, J. Wang, and W. Lu, “Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: Systematic review and meta-analysis,” Environmental Science and Pollution Research International, vol. 25, pp. 15133–15145, May 2018, doi: 10.1007/s11356-018-1629-7.
[43] I. S. Mudway, I. Dundas, H. E. Wood, N. Marlin, J. B. Jamaludin, S. A. Bremner, L. Cross, A. Grieve, A. Nanzer, B. M. Barratt, S. Beevers, D. Dajnak, G. W. Fuller, A. Font, G. Colligan, A. Sheikh, R. Walton, J. Grigg, F. J. Kelly, T. H. Lee, and C. J. Griffiths, “Impact of London’s low emission zone on air quality and children’s respiratory health: A sequential annual crosssectional study,” The Lancet Public Health, vol. 4, pp. 28–40, Jan. 2019, doi: 10.1016/S2468- 2667(18)30202-0.
[44] EPA, “Exposure Factors Handbook 2011 Edition (Final Report),” US-EPA/600/-09/052F, 2011.
DOI: 10.14416/j.asep.2023.02.009
Refbacks
- There are currently no refbacks.