Lead Ions Removal Using Pineapple Leaf-Based Modified Celluloses
Abstract
Pineapple leaves are largely discarded in the harvest area and considered as agricultural waste. Herein, the extracted pineapple leaves fiber was altered with chelating agents to become an adsorbent for lead ions (Pb2+) removal from aqueous solutions. The initial investigation determined that the most appropriate conditions for extracting cellulose fiber from pineapple leaves were stirring at 90–100 °C in 10%w/v NaOH for 1 h. Next, carboxymethyl, amide, and amidoxime were used to modify with the extracted cellulose fiber, denoted as Cell-CMC, Cell-AM, and Cell-AMX, respectively. At pH 6, Cell-CMC, Cell-AM, Cell-AMX, and the extracted cellulose fiber had maximum adsorption potential values of 9.3, 1.5, 3.6, and 6.3 mg g–1, respectively. In the kinetic analysis, Cell-CMC, Cell-AM, and extracted cellulose adsorption behaviors were well represented using a model of pseudo 1st order, while the adsorption behavior of Cell-AMX was best represented using a model of pseudo 2nd order. Further investigation demonstrated that the desorption efficiency of each adsorbent increased as the pH value was lowered from 3, 4, and 6.
Keywords
[1] N. Wali, “Pineapple (Ananas comosus),” in Nonvitamin and Nonmineral Nutritional Supplement. Cambridge, UK: Academic Press, 2019, pp. 367–373.
[2] T. A. Saleh, M. Mustaqeem, and M. Khaled, “Water treatment technologies in removing heavy metal ions from wastewater: A review,” Environmental Nanotechnology, Monitoring and Management, vol. 17, May 2022, Art. no. 100617, doi: 10.1016/j.enmm.2021.100617.
[3] Z. Sun, Y. Liu, Y. Huang, X. Tan, G. Zeng, X. Hu, and Z. Yang, “Fast adsorption of Cd2+ and Pb2+ by EGTA dianhydride (EGTAD) modified ramie fiber,” Journal of Colloid and Interface Science, vol. 434, pp. 152–158, Nov. 2014, doi: 10.1016/j. jcis.2014.07.036.
[4] A. S. A. Aziz, L. A. Manaf, H. C. Man, and N. S. Kumar, “Equilibrium studies and dynamic behavior of cadmium adsorption by palm oil boiler mill fly ash (POFA) as a natural low-cost adsorbent,” Desalination and Water Treatment, vol. 54, no. 7, pp. 1956–1968, Aug. 2013 doi: 10.1080/19443994.2014.891466.
[5] B. Peng, Z. Yao, X. Wang, M. Crombeen, D. G. Sweeney, and K. C. Tam, “Cellulose-based materials in wastewater treatment of petroleum industry,” Green Energy and Environment, vol. 5, no. 1, pp. 37–49, Jan. 2020, doi: 10.1016/j.gee. 2019.09.003.
[6] M. Ahmad, K. Manzoor, and S. Ikram, “Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; A review,” International Journal of Biological Macromolecules, vol 105, no. 1, pp. 190–203, Jul. 2021, doi: 10.1016/j.ijbiomac.2017.07.008.
[7] Suhas, V. K. Gupta, P. J. M. Carrott, R. Singh, M. Chaudhary, and S. Kushwwaha, “Cellulose: A review as natural, modified and activated carbon adsorbent,” Bioresource Technology, vol. 216, pp. 1066–1076, Sep. 2016, doi: 10.1016/j.biortech.2016.05.106.
[8] S. Huang, L. Wu, T. Li, D. Xu, X. Lin, and C. Wu, “Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal,” International Journal of Biological Macromolecules, vol. 137, pp. 939– 947, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.06.234.
[9] C. Lei, J. Gao, W. Ren, Y. Xie, S. Y. H. Abdalkarim, S. Wang, Q. Ni, and J. Yao, “Fabrication of metal-organic frameworks @cellulose aerogels composite materials for removal of heavy metal ions in water,” Carbohydrate Polymers, vol. 205, pp. 35–41, Feb. 2019, doi: 10.1016/j.carbpol. 2018.10.029.
[10] F. Wang, Y. Pan, P. Cai, T. Guo, and H. Xiao, “Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulosebased adsorbent,” Bioresource Technology, vol. 241, pp. 482–490, Oct. 2017, doi: 10.1016/j. biortech.2017.05.162.
[11] C. Wang, Y. Zhan, Y. Wu, X. Shi, Y. Du, Y. Luo, and H. Deng, “TiO2/rectorite-trapped cellulose composite nanofibrous mats for multiple heavy metal adsorption,” International Journal of Biological Macromolecules, vol. 183, pp. 245–253, Jul. 2021, doi: 10.1016/j.ijbiomac.2021.04.085.
[12] Y. Liu, L. Qiao, A. Wang, Y. Li, L. Zhao, and K. Du, “Tentacle-type poly (hydroxamic acid)- modified microporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption,” Journal of Chromatography A, vol. 1645, May 2021, Art. no. 33848662, doi: 10.1016/j.chroma.2021.462098.
[13] R. Wang, L. Deng, X. Fan, K. Li, and W. Li, “Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide,” International Journal of Biological Macromolecules, vol. 189, pp. 607–617, Oct. 2021, doi: 10.1016/j. ijbiomac.2021.08.156.
[14] L. Qiao, S. Li, Y. Li, Y. Liu, and K. Du, “Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions,” Journal of Cleaner Production, vol. 253, Aug. 2020, Art. no. 120017, doi: 10.1016/j.jclepro.2020.120017.
[15] X. Pei, L. Gan, Z. Tong, H. Gao, S. Meng, W. Zhang, P. Wang, and Y. Chen, “Robust cellulosebased composite adsorption membrane for heavy metal removal,” Journal of Hazardous Materials, vol. 406, Mar. 2021, Art. no. 124746, doi: 10.1016/j.jhazmat.2020.124746.
[16] T. I. Shaheen and H. E. Emam, “Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using Acid hydrolysis,” International Journal of Biological Macromolecules, vol. 107, pp. 1599–1606, Feb. 2018, doi: 10.1016/j.ijbiomac. 2017.10.028.
[17] X. Shao, J. Wang, Z. Liu, N. Hu, M. Liu, and Y. Xu, “Preparation and characterization of porous microcrystalline cellulose from corncob,” Industrial Crops and Products, vol. 151, no. 1, Sep. 2020, Art. no. 112457, doi: 10.1016/j.indcrop.2020.112457.
[18] M. T. Ban, N. Mahadin, and K. J. A. Karim, “Synthesis of hydrogel from sugarcane bagasse extracted cellulose for swelling properties study,” Materials Today: Proceedings, vol. 50, no. 6, pp. 2567– 2575, 2022, doi: 10.1016/j.matpr.2021.08.342.
[19] K. Harini and C. C. Mohan, “Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob, and sugarcane bagasse,” International Journal of Biological Macromolecules, vol. 163, pp. 1375–1383, Nov. 2020, doi: 10.1016/j.ijbiomac.2020.07.239.
[20] M. S. A. Karim, N. Zainol, N. I. A. H. As’ari, N. S. M. Hussain, and N. H. Aziz, “Application of soda pulping method in cellulose extraction process from pineapple leaf,” Materials Today: Proceedings, vol. 57, no. 3, pp. 1208–1214, 2022, doi: 10.1016/j.matpr.2021.11.022.
[21] L. J. Y. Jabber, J. C. Grumo, A. C. Alguno, A. A. Lubguban, and R. Y. Capangpangan, “Influence of cellulose fibers extracted from pineapple (Ananas comosus) leaf to the mechanical properties of rigid polyurethane foam,” Materials Today: Proceedings, vol. 46, no. 3, pp. 1735– 1739, 2021 doi: 10.1016/j.matpr.2020.07.566.
[22] N. C. Dafader, N. Rahman, S. K. Majumdar, M. M. R. Khan, and Md. M. Rahman, “Preparation and characterization of iminodiacetate group containing nonwoven polyethylene fabrics and its application in chromium adsorption,” Journal of Polymers and the Environment, vol. 26, pp. 740–748, Feb. 2018, doi: 10.1007/s10924- 017-0991-8.
[23] B. Zhao, H. Jiang, Z. Lin, S. Xu, J. Xie, and A. Zhang, “Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions,” Carbohydrate Polymers, vol. 224, Nov. 2019, Art. no. 115022, doi: 10.1016/j.carbpol. 2019.115022.
[24] R. E. Abou-Zeid, S. Dacrory, K. A. Ali, and S. Kamel, “Novel method of preparation of tricarboxylic cellulose nanofiber for efficient removal of heavy metal ions from aqueous solution,” International Journal of Biological Macromolecules, vol. 119, pp. 207–214, Nov. 2018, doi: 10.1016/j.ijbiomac.2018.07.127.
[25] Z. Lian, Y. Li, H. Xian, X. Ouyang, Y. Lu, X. Peng, and D. Hu, “EDTA-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose nanocomposite: Synthesis, characterization, and Pb(II) adsorption performance,” International Journal of Biological Macromolecules, vol. 165, pp. 591–600, Dec. 2020, doi: 10.1016/j.ijbiomac.2020.09.156.
[26] J. Liu, T. Chen, Y. Yang, Z. Bai, L. Xia, M. Wang, and X. Lv, “Removal of heavy metal ions and anionic dyes from aqueous solutions using amidefunctionalized cellulose-based adsorbents,” Carbohydrate Polymers, vol. 230, Feb. 2020, Art. no. 115619, doi: 10.1016/j.carbpol.2019.115619.
[27] R. Saliba, H. Gauthier, and R. Gauthier, “Adsorption of heavy metal ions on virgin and chemicallymodified lignocellulosic materials,” Adsorption Science and Technology, vol. 23, pp. 313–322, May 2005, doi: 10.1260/0263617054770039.
[28] S. C. Gupta, P. Dass, P. Sharma, A. V. Singh, and S. Gupta, “Removal of 58Co, 134Cs, and 95Zr radioisotopes from aqueous solutions using cellulose iminodiacetic acid chelating cum cation-exchanger,” Desalination, vol. 143, no. 2 pp. 141–145, May 2002, doi: 10.1016/S0011-9164(02)00235-7.
[29] A. Daochalermwong, N. Chanka, K. Songsrirote, P. Dittanet, C. Niamnuy, and A. Seubsai, “Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber,” ACS Omega, vol. 5, no. 10, pp. 5285–5296, Mar. 2020, doi: 10.1021/acsomega.9b04326.
[30] Q. Chen, J. Zheng, L. Wen, C. Yang, and L. Zhang, “A multi-functional-group modified cellulose for enhanced heavy metal cadmium adsorption: Performance and quantum chemical mechanism,” Chemosphere, vol. 224, pp. 509–518, Jun. 2019, doi: 10.1016/j.chemosphere.2019.02.138.
[31] H. Y. Choi, J. H. Bae, Y. Hasegawa, S. An, I. S. Kim, and H. Lee, “Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water,” Carbohydrate Polymers, vol. 234, Apr. 2020, Art. no. 115881, doi: 10.1016/j.carbpol.2020.115881.
[32] N. A. Fakhre and B. M. Ibrahim, “The use of new chemically modified cellulose for heavy metal ion adsorption,” Journal of Hazardous Materials, vol. 343, no. 5, pp. 324–331, Feb. 2018, doi: 10.1016/j.jhazmat.2017.08.043.
[33] A. A. Hamad, M. S. Hassouna, T. I. Shalaby, M. F. Elkady, M. A. Abd Elkawi, and H. A. Hamad, “Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metal,” International Journal of Biological Macromolecules, vol. 151, pp. 1299–1313, May 2020, doi: 10.1016/j.ijbiomac.2019.10.176.
[34] M. A. Hashem, M. M. Elnagar, I. M. Kenawy, and M. A. Ismail, “Synthesis and application of hydrazono-imidazoline modified cellulose for selective separation of precious metals from geological samples,” Carbohydrate Polymers, vol. 237, Jun. 2020, Art. no. 116177, doi: 10.1016/j.carbpol.2020.116177.
[35] C. Li, H. Ma, S. Venkateswaran, and B. S. Hsiao, “Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/ heavy metals ions,” Chemical Engineering Journal, vol. 389, Jun. 2020, Art. no. 123458, doi: 10.1016/j.cej.2019.123458.
[36] M. Stephen, N. Catherine, M. Brenda, K. Andrew, P. Leslie, and G. Corrine, “Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption,” Journal of Hazardous Materials, vol. 192, no. 2, pp. 922–927, Aug. 2011, doi: 10.1016/j.jhazmat.2011.06.001.
[37] J. Wang, M. Liu, C. Duan, J. Sun, and Y. Xu, “Preparation and characterization of cellulosebased adsorbent and its application in heavy metal ions removal,” Carbohydrate Polymers, vol. 206, pp. 837–843, Feb. 2019, doi: 10.1016/j. carbpol.2018.11.059.
[38] H. I. Syeda and P. Yap, “A review on threedimensional cellulose-based aerogels for the removal of heavy metals from water,” Science of the Total Environment, vol. 807, no. 1, Feb. 2022, Art. no. 451606, doi: 10.1016/j.scitotenv. 2021.150606.
[39] Md. H. Rahaman, Md. A. Islam, Md. M. Islam, Md. A. Rahman, and S. M. N. Alam, “Biodegradable composite adsorbent of modified cellulose and chitosan to remove heavy metal ions from aqueous solution,” Current Research in Green and Sustainable Chemistry, vol. 4, 2021, Art. no. 100119, doi: 10.1016/j.crgsc.2021.100119.
[40] O. Heba, S. Ali, and N. Abdullah, “Chelate coupling with pineapple leaves as a modified bio-sorbent for lead ions (II) removal,” International Journal of Environmental Science and Technology, vol. 16, pp. 7293–7304, May 2019, doi: 10.1007/s13762-019-02420-5.
[41] V. Hospodarova, E. Singovszka, and N. Stevulova, “Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation building materials,” American Journal of Analytical Chemistry, vol. 9, no. 6, pp. 303–310, Jun. 2018, doi: 10.4236/ajac.2018.96023.
[42] V. Pushpamalar, S. J. Langford, M. Ahmad, and Y. Y. Lim, “Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste,” Carbohydrate Polymers, vol. 64, pp. 312–318, May 2006, doi: 10.1016/j.carbpol.2005.12.003.
[43] H. Li, Y. Wang, M. Ye, X. Zhang, H. Zhang, G. Wang, and Y. Zhang, “Hierarchically porous poly(amidoxime)/bacterial cellulose composite aerogel for highly efficient scavenging of heavy metals,” Journal of Colloid and Interface Science, vol. 600, pp. 752–763, Oct. 2021, doi: 10.1016/j.jcis. 2021.05.071.
[44] M. I. El-Khaiary and G. F. Malash, “Common data analysis errors in batch adsorption studies,” Hydrometallurgy, vol. 105, pp. 314–320, Jan. 2011, doi: 10.1016/j.hydromet.2010.11.005.
[45] S. Azizan, “Kinetic models of sorption: A theoretical analysis,” Journal of Colloid and Interface Science, vol. 274, no. 1, pp. 47–52, Aug. 2004, doi: 10.1016/j.jcis.2004.03.048.
DOI: 10.14416/j.asep.2022.05.009
Refbacks
- There are currently no refbacks.