Recent Trends and Updates for Chemical Pretreatment of Lignocellulosic Biomass
Abstract
[1] UN Climate Change, “COP26 Explained,” 2021. [Online]. Available: https://ukcop26.org/cop26- goals/
[2] M. Sriariyanun and K. Kitsubthawee, “Trend in lignocellosic biorefinery for production of value-added biochrmicals,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 283– 284, 2020, doi: 10.14416/j.asep.2020.02.005.
[3] M. Sriariyanun, J. H. Heitz, P. Yusurin, S. Asavasanti, and P. Tantayotai, “Itaconic acid: A promisong and sustainable platform chemical?,” Applied Science and Engineering Progress, vol. 12, no. 2, pp. 78–82, 2019, doi: 10.14416/j. asep.2019.05.002.
[4] P. Rachamontree, T. Douzou, K. Cheenkachorn, M. Sriariyanun, and K. Rattanaporn, “Furfural: A sustainable platform chemical and fuel,” Applied Science and Engineering Progress, vol. 13, no. 1, pp. 3–10, 2020, doi: 10.14416/j. asep.2020.01.003.
[5] Y. S. Chen, P. Mutrakulcharoen, S. Chitor, L. Cheenkachorn, P. Tantayotai, E. J. Panakul, and M. Sriariyanun, “Recent situation and progress in biorefining progress of lignocellulose biomass: Toward green economy,” Applied Science and Engineering Progress, vol. 13, no. 4, pp. 299– 311, 2020, doi: 10.14416/j.asep.2020.08.002.
[6] C. R. Soccol, L. P. D. S. Vandenberghe, A. B. P. Medeiros, S. G. Karp, M. Buckeridge, L. P. Ramos, A. P. Piarelo, V. F. Leitao, L. M. F. Gottschalk, M. A. Ferrara, E. P. D. S. Bon, L. M. P. D. Moraes, J. D. A. Araujo, and F. A. G. Torres, “Bioethanol from lignocelluloses: Status and perspective in Brazil,” Bioresource Technology, vol. 101, pp. 4820–4825, 2010.
[7] E. J. Panakul, M. Sriariyanun, J. Ratanapoompinyo, and P. Yasurin, “Influence of sulfuric acid pretreatment and inhibitor of sugarcane bagasses on the production of fermentable sugar and ethanol,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art. no. 5238, doi: 10.14416/j.asep.2021.07.006.
[8] E. J. Panakkal, K. Cheenkachorn, M. P. Gundupalli, N. Kitiborwornkul, and M. Sriariyanun, “Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol,” Journal of the Indian Chemical Society, vol. 98, p. 100264, 2021.
[9] K. Rattanaporn, P. Tantayotai, T. Phusantisampan, P. Pornwongthong, and M. Sriariyanun, “Organic acid pretreatment of oil palm trunk: Effect on enzymatic saccharification and ethanol production,” Bioprocess and Biosystem Engineering, vol. 41, pp. 467–477, 2018.
[10] K. Rattanaporn, S. Roddecha, M. Sriariyanun, and K. Cheenkachorn, “Improving saccharification of oil palm shell by acetic acid pretreatment for biofuel production,” Energy Procedia, vol. 141, pp. 146–149, 2017.
[11] S. Chuetor, T. Ruiz, A. Barakat, N. Laosiripojana, V. Champreda, and M. Sriariyanun, “Evaluation of rice straw biopowder from alkaline-mechanical pretreatment by hydro-textural approach,” Bioresource Technology, vol. 323, p. 124619, 2021.
[12] M. Sriariyanun, N. Kitiborwornkul, P. Tantayotai, K. Rattanaporn, and P. L. Show, “One-pot ionic liquid-mediated bioprocess for pretreatment and enzymatic hydrolysis of rice straw with ionic liquid-tolerance bacterial cellulase,” Bioengineering, vol. 9, p. 17, 2022.
[13] P. Tantayotai, K. Rattanaporn, S. Tepaamorndech, K. Cheenkachorn, and M. Sriariyanun, “Analysis of an ionic liquid and salt tolerant microbial consortium which is useful for enhancement of enzymatic hydrolysis and biogas production,” Waste and Biomass Valorization, vol. 10, pp. 1481–1491, 2019.
[14] P. Tantayotai, P. Rachmontree, W. Rodiahwati, K. Rattanaporn, and M. Sriariyanun, “Production of ionic liquid-tolerant cellulase produced by microbial consortium and its application in biofuel production,” Energy Procedia, vol. 100, pp. 155– 159, 2016.
[15] P. Tantayotai, M. P. Gundupalli, E. J. Panakkal, M. Sriariyanun, K. Rattanaporn, and D. Bhattacharyya, “Differential influence of imidazolium ionic liquid on cellulase kinetics in saccharification of cellulose and lignocellulosic biomass substrate,” Applied Science and Engineering Progress, vol. 15, no. 3, 2022, Art. no. 5510, doi: 10.14416/j.asep.2021.11.003.
[16] Y. T. Tan, A. S. M. Chua, and G. C. Ngoh, “Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products–A review,” Bioresource Technology, vol. 297, p. 122522, 2020.
[17] A. R. Mankar, A. Pandey, A. Modak, and K. K. Pant, “Pretreatment of lignocellulosic biomass: A review on recent advances,” Bioresource Technology, vol. 334, p. 125235, 2021.
[18] A. Wagle, M. J. Angove, A. Mahara, A. Wagle, B. Mainali, M. Martins, and S. R. Paudel, “Multistage pre-treatment of lignocellulosic biomass for multi-product biorefinery: A review,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101702, 2022.
[19] M. P. Gundupalli, P. Tantayotai, E. J. Panakkal, S. Chuetor, S. Kirdponpattara, A. S. S. Thomas, and M. Sriariyanun, “Hydrothermal pretreatment optimization and deep eutectic solvent pretreatment of lignocellulosic biomass: An integrated approach,” Bioresource Technology Reports, vol. 17, p. 100957, 2022.
DOI: 10.14416/j.asep.2022.03.002
Refbacks
- There are currently no refbacks.