Hybrid Composites for Railway and Transportation Uses – A Review
Abstract
Keywords
[1] A. G. Koniuszewska and J. W. Kaczmar, “Application of polymer based composite materials in transportation,” Progress in Rubber, Plastics and Recycling Technology, vol. 32, no. 1, pp. 1–23, Feb. 2016, doi: 10.1177/147776061603200101.
[2] M. Knight and D. Curliss, “Composite materials,” in Encyclopedia of Physical Science and Technology. Amsterdam, Netherlands: Elsevier, Jan. 2003, pp. 455–468, doi: 10.1016/B0-12- 227410-5/00128-9.
[3] N. Yaragatti and A. Patnaik, “A review on additive manufacturing of polymers composites,” Materials Today: Proceedings, vol. 44, no. 6 pp. 4150–4157, 2021, doi: 10.1016/j.matpr. 2020.10.490.
[4] B. Marques, A. Tadeu, J. António, J. Almeida, and J. de Brito, “Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork byproducts,” Construction and Building Materials, vol. 239, Apr. 2020, Art. no. 117851, doi: 10.1016/J.CONBUILDMAT.2019.117851.
[5] Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, “A review of optimization techniques used in the design of fibre composite structures for civil engineering applications,” Materials & Design, vol. 33, no. 1, pp. 534–544, Jan. 2012, doi: 10.1016/J.MATDES.2011.04.061.
[6] Y. Li, Y. Xiao, L. Yu, K. Ji, and D. Li, “A review on the tooling technologies for composites manufacturing of aerospace structures: Materials, structures and processes,” Composites Part A: Applied Science and Manufacturing, vol.154, p.106762, Mar. 2022, Art. no. 106762, doi: 10.1016/J.COMPOSITESA.2021.106762.
[7] W. Gunselmann, “Technologies for increased energy efficiency in railway systems,” in 2005 European Conference on Power Electronics and Applications, 2005, pp. 1–10, doi: 10.1109/EPE.2005.219712.
[8] T. Koh, M. Shin, Y. Bae, and S. Hwang, “Structural performances of an eco-friendly prestressed concrete sleeper,” Construction and Building Materials, vol. 102, pp. 445–454, Jan. 2016, doi: 10.1016/J.CONBUILDMAT.2015.10.189.
[9] S. Laryea, M. S. Baghsorkhi, J. F. Ferellec, G. R. McDowell, and C. Chen, “Comparison of performance of concrete and steel sleepers using experimental and discrete element methods,” Transportation Geotechnics, vol. 1, no. 4, pp. 225– 240, Dec. 2014, doi: 10.1016/J.TRGEO.2014.05.001.
[10] W. Ferdous, A. Manalo, G. V. Erp, T. Aravinthan, S. Kaewunruen, and A. Remennikov, “Composite railway sleepers – Recent developments, challenges and future prospects,” Composite Structures, vol. 134, pp. 158–168, Dec. 2015, doi: 10.1016/J. COMPSTRUCT.2015.08.058.
[11] W. Ferdous and A. Manalo, “Failures of mainline railway sleepers and suggested remedies – Review of current practice,” Engineering Failure Analysis, vol. 44, pp. 17–35, Sep. 2014, doi: 10.1016/J. ENGFAILANAL.2014.04.020.
[12] D. L. Bleviss, “Transportation is critical to reducing greenhouse gas emissions in the United States,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 10, no. 2, 2021. doi: 10.1002/wene.390.
[13] R. Sussman, L. Q. Tan, and C. E. Kormos, “Behavioral interventions for sustainable transportation: An overview of programs and guide for practitioners,” in Transport and Energy Research. Amsterdam, Netherlands: Elsevier, 2020, pp. 315–371, doi: 10.1016/b978-0-12-815965-1.00014-4.
[14] L. M. Ellram, “Environmental sustainability in freight transportation,” in International Encyclopedia of Transportation. Amsterdam, Netherlands: Elsevier, 2021, pp. 58–63, doi: 10.1016/b978-0-08-102671-7.10220-9.
[15] S. Yi, “Strengthening of the railway transport capacity,” in Principles of Railway Location and Design, Amsterdam, Netherlands: Elsevier, 2018, pp. 473–534, doi: 10.1016/b978-0-12-813487- 0.00007-x.
[16] M. de A. D’Agosto, “Transportation, an introduction,” in Transportation, Energy Use and Environmental Impacts, Amsterdam, Netherlands: Elsevier, 2019, pp. 1–46, doi: 10.1016/b978-0-12-813454-2.00001-5.
[17] R. A. Smith, “Fatigue and the railways: An overview,” in Fatigue in Railway Infrastructure, Amsterdam, Netherlands: Elsevier, 2009, pp. 1–19, doi: 10.1533/9781845697020.1.
[18] P. K. Mallilck, Fibre-reinforced Composites Materials, Manufacturing and Design, 3rd ed. Florida: CRC Press, 2007.
[19] A. B. M. Supian, S. M. Sapuan, M. Y. M. Zuhri, E. S. Zainudin, and H. H. Ya, “Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review,” Defence Technology, vol. 14, no. 4, pp. 291–305, 2018, doi: 10.1016/j. dt.2018.04.004.
[20] P. K. Alagesan, “Recent advances of hybrid fiber composites for various applications,” in Hybrid Fiber Composites. New Jersey: Wiley 2020, pp. 381–404. doi: 10.1002/9783527824571.ch18.
[21] T. P. Sathishkumar, J. Naveen, and S. Satheeshkumar, “Hybrid fiber reinforced polymer composites - A review,” Journal of Reinforced Plastics and Composites, vol. 33, no. 5, pp. 454–471, Jan. 2014, doi: 10.1177/0731684413516393.
[22] E. H. Albuja, J. A. Szpunar, and A. G. Odeshi, “Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar® fabrics impregnated with shear thickening fluid,” Composites Part A: Applied Science and Manufacturing, vol. 87, pp. 54–65, Aug. 2016, doi: 10.1016/j.compositesa. 2016.04.007.
[23] G. Seshanandan, D. Ravindran, and T. Sornakumar, “Mechanical properties of nano titanium oxide particles - hybrid jute-glass FRP composites,” Materials Today: Proceedings, vol. 3, no. 6, pp. 1383–1388, 2016, doi: 10.1016/j.matpr. 2016.04.019.
[24] D. Matykiewicz, “Hybrid epoxy composites with both powder and fiber filler: A review of mechanical and thermomechanical properties,” Materials, vol. 13, no. 8, Apr. 2020, Art. no. 1802, doi: 10.3390/MA13081802.
[25] M. Shalauddin, S. Akhter, W. J. Basirun, S. Bagheri, N. S. Anuar, and M. R. Johan, “Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids,” Electrochimica Acta, vol. 304, pp. 323–333, May 2019, doi: 10.1016/j.electacta.2019.03.003.
[26] J. G. Rose, P. F. Teixeira, and N. E. Ridgway, “Utilization of asphalt/bituminous layers and coatings in railway trackbeds: A compendium of international applications,” in Joint Rail Conference, 2010, pp. 239–255, doi: 10.1115/ JRC2010-36146.
[27] X. Xiao, D. Cai, L. Lou, Y. Shi, and F. Xiao, “Application of asphalt based materials in railway systems: A review,” Construction and Building Materials, vol. 304, Oct. 2021, Art. no. 124630, doi: 10.1016/j.conbuildmat. 2021.124630.
[28] The European Asphalt Pavement Association, “Asphalt in railway tracks asphalt in railway tracks EAPA technical review,” EAPA, Brussels, Belgium, 2021.
[29] J. G. Rose, “Test measurements and performance evaluations of in-service railway asphalt trackbeds,” University of Kentucky, Kentucky, USA, 2002.
[30] B. Warren, “Field application of expanding rigid polyurethane stabilization of railway track substructure,” M.S. thesis, Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin—Madison, May 2015.
[31] C. Santulli, “Natural fiber-reinforced composites: Recent developments and prospective utilization in railway industries for sleeper manufacturing,” in Biomass, Biopolymer-Based Materials, and Bioenergy. Sawston, UK: Woodhead Publishing, 2019, pp. 225–238, doi: 10.1016/B978-0-08- 102426-3.00012-6.
[32] A. Manalo, T. Aravinthan, W. Karunasena, and A. Ticoalu, “A review of alternative materials for replacing existing timber sleepers,” Composite Structures, vol. 92, no. 3. pp. 603–611, Feb. 2010. doi: 10.1016/j.compstruct.2009.08.046.
[33] W. Ferdous and A. Manalo, “Failures of mainline railway sleepers and suggested remedies – Review of current practice,” Engineering Failure Analysis, vol. 44, pp. 17–35, Sep. 2014, doi: 10.1016/J. ENGFAILANAL.2014.04.020.
[34] H. O. Shin, J. M. Yang, Y. S. Yoon, and D. Mitchell, “Mix design of concrete for prestressed concrete sleepers using blast furnace slag and steel fibers,” Cement and Concrete Composites, vol. 73, pp. 39–53, Oct. 2016, doi: 10.1016/j. cemconcomp.2016.08.007.
[35] G. L. Golewski, “Green concrete based on quaternary binders with significant reduced of CO2 emissions,” Energies, vol. 14, no. 15, 2021, Art. no. 4558, doi: 10.3390/en14154558.
[36] A. Manalo, T. Aravinthan, W. Karunasena, and A. Ticoalu, “A review of alternative materials for replacing existing timber sleepers,” Composite Structures, vol. 92, no. 3, pp. 603–611, Feb. 2010, doi: 10.1016/j.compstruct.2009.08.046.
[37] S. Kaewunruen, A. Remennikov, and M. H. Murray, “Limit states design of railway concrete sleepers,” Proceedings of the Institution of Civil Engineers-Transport, vol. 165, no. 2, pp. 81–85, May 2012.
[38] F. Rezaie, A. M. Bayat, and S. M. Farnam, “Sensitivity analysis of pre-stressed concrete sleepers for longitudinal crack prorogation effective factors,” Engineering Failure Analysis, vol. 66, pp. 385–397, Aug. 2016, doi: 10.1016/j. engfailanal.2016.04.015.
[39] P. Zhang, S. Han, G. L. Golewski, and X. Wang, “Nanoparticle-reinforced building materials with applications in civil engineering” Advances in Mechanical Engineering, vol. 12, no. 10, pp. 1–4, 2020.
[40] B. Szostak and G. L. Golewski, “Rheology of cement pastes with siliceous fly ash and the CSH nano-admixture,” Materials, vol. 14, no. 13, May 2021, Art. no. 3640.
[41] É. A.Silva, D. Pokropski, R. You, and S. Kaewunruen, “Comparison of structural design methods for railway composites and plastic sleepers and bearers,” Australian Journal of Structural Engineering, vol. 18, no. 3, pp. 160–177, 2017, doi: 10.1080/13287982.2017.1382045.
[42] G. L. Golewski, “Physical characteristics of concrete, essential in design of fracture - resistant, dynamically loaded reinforced concrete structures” Material Design & Processing Communications, vol. 1, no. 5, May 2019, Art. no. e82, doi: 10.1002/mdp2.82.
[43] S. Ju, J. Yoon, D. Sung, and S. Pyo, “Mechanical properties of coal ash particle-reinforced recycled plastic-based composites for sustainable railway sleepers,” Polymers, vol. 12, no. 10, pp. 1–15, 2020, doi: 10.3390/polym12102287.
[44] P. Jagadeesh, M. Puttegowda, Y. G. T. Girijappa, S. M. Rangappa, and S. Siengchin, “Carbon fiber reinforced areca/sisal hybrid composites for railway interior applications: Mechanical and morphological properties,” Polymer Composites, vol. 43, no. 1, pp. 160–172, Oct. 2021, doi: 10.1002/pc.26364.
[45] W. Ferdous, A. Manalo, O. AlAjarmeh, A. A. Mohammed, C. Salih, P. Yu, M. M. Khotbehsara, and P. Schubel, “Static behaviour of glass fibre reinforced novel composite sleepers for mainline railway track,” Engineering Structures, vol. 229, 2021, Art. no. 111627, doi: 10.1016/j.engstruct. 2020.111627.
[46] M. Robinson, “6.20 - Applications in trains and railways,” in Comprehensive Composite Materials, Amsterdam, Netherlands: Elsevier, 2000.
[47] M. Robinson, E. Matsika, and Q. Peng, “Application of composites in rail vehicles,” in 21st International Conference on Composite Materials, 2017, pp. 1–13.
[48] B. Yang, C. Yang, and S. Xiao, “Effect of crash energy distribution on the dynamic behavior of train collisions algorithm,” Journal of Advances in Vehicle Engineering, vol. 2, no. 3, pp. 133–141, 2016.
[49] A. Bahdon, “Application of composite material (Fiber Glass) on Addis Ababa light railway car body and it structural analysis by FEM,” Ph.D. dissertation, Addis Ababa University, 2017.
[50] R. A. Smith and J. Zhou, “Background of recent developments of passenger railways in China, the UK and other European countries,” Journal of Zhejiang University: Science A, vol. 15, no. 12, pp. 925–935, Dec. 2014, doi: 10.1631/jzus. A1400295.
[51] A. Önder and M. Robinson, “Investigating the feasibility of a new testing method for GFRP/ polymer foam sandwich composites used in railway passenger vehicles,” Composite Structures, vol. 233, Feb. 2020, Art. no. 111576, doi: 10.1016/j.compstruct.2019.111576.
[52] J. S. Kim, K. B. Shin, H. J. Yoon, and W. G. Lee, “Durability evaluation of a composite bogie frame with bow-shaped side beams,” Journal of Mechanical Science and Technology, vol. 26, no. 2, pp. 531–536, Feb. 2012, doi: 10.1007/s12206- 011-1034-3.
[53] J. S. Goo, J. S. Kim, and K. B. Shin, “Evaluation of structural integrity after ballast-flying impact damage of a GFRP lightweight bogie frame for railway vehicles,” Journal of Mechanical Science and Technology, vol. 29, no. 6, pp. 2349–2356, Jun. 2015, doi: 10.1007/s12206-015-0528-9.
[54] W. Geuenich, C. Gunther, and R. Leo, “The dynamics of fiber composite bogies with creepcontrolled wheelsets,” Vehicle System Dynamics, vol. 12, no. 1–3, pp. 134–140, 1983, doi: 10.1080/00423118308968739.
[55] K. W. Jeon, K. B. Shin, and J. S. Kim, “A study on fatigue life and strength of a GFRP composite bogie frame for urban subway trains,” Procedia Engineering, vol. 10, pp. 2405–2410, 2011 doi: 10.1016/j.proeng.2011.04.396.
DOI: 10.14416/j.asep.2022.04.003
Refbacks
- There are currently no refbacks.