Page Header

A Review on the Application of Voltammetry in the Determination of Various Substances in Fruit Juices

Joseph R. Ortenero, Nathaniel P. Dugos, Allan N. Soriano, Erika Mae T. Borres, Ashley Mae T. Juan Sing, Mike Dane A. Pararuan, Erika Leanne R. Tined

Abstract


Voltammetry is preferred amongst other detection techniques for vitamins and antioxidants because of its selectivity, sensitivity, ease of access, and inexpensive instrumentation. This study aims to assess and evaluate existing studies revolving around the voltammetric determination of vitamins and antioxidants of fruit juices, seeing as they are a rich source of vitamins and antioxidants, to find commonalities and trends over the years. Literature studies found differential pulse voltammetry (DPV) and square wave voltammetry (SWV) to be the most utilized determination method for vitamins and antioxidants, respectively. Electrode performance was also compared between bare and modified electrodes by comparing the limit of detection and recovery rate of each sample. Bare electrodes are found to be suitable for the detection of vitamins by having a high level of detection (LOD) values, but modified electrodes seemed to display enhanced performance when compared to the bare electrode. The optimal pH value of the supporting electrolyte in vitamins is 5.0 ≤ pH ≤ 7.0, while it was found that the optimal pH value for antioxidants was 2.0 ≤ pH ≤ 6.0. Voltammetric determination is highly dependent on the combination of the method, the material used in making the electrode, and the pH of the supporting electrolyte solution.

Keywords



[1] J. Korkitpoonpol, N. Suwannaprom, and S. Keeratipibul, “Flavor profile in fresh-squeezed juice of four thai lime cultivars: Identification of compounds that influence fruit selection by saster chefs,” Applied Science and Engineering Progress, vol. 13, no. 2, pp. 146–157, 2020, doi: 10.14416/j.asep.2020.02.001.

[2] A. Kumar and L. Gowda, “Food additives: Liquid chromatography,” in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam, Netherlands: Elsevier, 2014, doi: 10.1016/b978-0-12-409547-2.10943 -6.

[3] A. K. Srivastava, S. S. Upadhyay, C. R. Rawool, N. S. Punde, and A. S. Rajpurohit, “Voltammetric techniques for the analysis of drugs using nanomaterials based chemically modified electrodes,” Current Analytical Chemistry, vol. 15, no. 3, pp. 249–276, 2019, doi.org/10.21 74/157311014666180510152154.

[4] R. Gulaboski and C. M. Pereira, “Electroanalytical techniques and instrumentation in food analysis,” in Handbook of Food Analysis Instruments, S. Oltes, Ed., Amsterdam, Netherlands: Amsterdam University Press, 2008, pp. 379–402, doi: 10.1201/ 9781420045673.CH17.

[5] A. M. Pisoschi, “Voltammetry as analytical technique in the study and quantitation of several food and beverage components,” Biochemistry & Analytical Biochemistry, vol. 4, no. 2, 2015, doi: 10.4172/2161-1009.1000e156.

[6] G. Hwang, W. Han, J. Park, and S. Kang, “Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode,” Talanta, vol. 76, no. 2, pp. 301–308, 2008, doi: 10.1016/j.talanta. 2008.02.039R.

[7] N. M. Thanh, N. D. Luyen, T. T. T. Toan, N. H. Phong, and N. V. Hop, “Voltammetry determination of Pb(II), Cd(II), and Zn(II) at bismuth film electrode combined with 8-hydroxyquinoline as a complexing agent,” Journal of Analytical Methods in Chemistry, vol. 20, no. 19, pp. 1–11, 2019, doi: 10.1155/2019/4593135.

[8] Z. Agheli, M. Pordel, and S. A. Beyramabadi, “Synthesis, characterization, optical properties, computational characterizations, QTAIM analysis and cyclic voltammetry of new organic dyes for dye-sensitized solar cells,” Journal of Molecular Structure, vol. 12, no. 2, pp. 127–228, 2020, doi: 10.1016/j. molstruc.2019.127228.

[9] M. Schneider, A. Türke, W. J. Fischer, and P. A. Kilmartin, “Determination of the wine preservative sulphur dioxide with cyclic voltammetry using inkjet printed electrodes,” Food Chemistry, vol.159, pp. 428–432, 2014, doi: 10.1016/j. foodchem.2014.03.049.

[10] P. Qiu, Y. Ni, and S. Kokot, “Determination of pesticide ethion by linear sweep stripping voltammetry,” Chemical Research in Chinese Universities, vol. 23, no. 1, pp. 14–17, 2007, doi: 10.1016/s1005-9040(07)60004-x.

[11] N. Chairerk, P. Pongyeela, and J. Chungsiriporn, “Ethanol extraction of active ingredients and antioxidants from germinated sangyod rice,” Applied Engineering Progress, vol 14, no.1, pp. 55– 59, 2021, doi: 10.14416/j. asep.2019.03.003.

[12] S. Goebel, S. Avallone, P. Detchewa, P. Prasajak, and W. Sriwichai, “Natural and synthetic antioxidants prevent the degradation of vitamin D3 fortification in canola oil during baking and in vitro digestion,” Applied Science and Engineering Progress, vol. 14, no. 2, pp. 247–258, 2021, doi: 10.14416/j.asep.2021.01.005.

[13] S. J. Devaki and R. L. Raveendran, “Vitamin C: Sources, functions, sensing and analysis,” in Vitamin C, A. H. Hamza, Ed., London, UK: IntechOpen, 2020, doi: 10.5772/intechopen. 70162.

[14] V. S. Ijeri, P. V. Jaiswal, and A. K. Srivastava, “Chemically modified electrodes based on macrocyclic compounds for determination of vitamin C by electrocatalytic oxidation,” Analytica Chimica Acta, vol. 43, no. 9, pp. 291–297, 2001, doi: 10.1016/s0003-2670(01)00989-8.

[15] A. Gopalakrishnan, R. Sha, N. Vishnu, R. Kumar, and S. Badhulika, “Disposable, efficient and highly selective electrochemical sensor based on Cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices,” Nano-Structures & Nano-Objects, vol. 16, pp. 96–103, 2018, doi: 10.1016/j.nanoso.2018. 05.004.

[16] S. Gheibi, H. Karimi-Maleh, M. A. Khalilzadeh, and H. Bagheri, “A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode,” Journal of Food Science and Technology, vol. 52, no. 1, pp. 276–284, 2013, doi: 10.1007/ s13197-013-1026-7.

[17] B. Baś, M. Jakubowska, and U. Górski, “Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2,” Talanta, vol. 84, no. 4, pp. 1032–1037, 2011, doi: 10.1016/j.talanta. 2011.03.006.

[18] A. M. Pisoschi, A. F. Danet, and S. Kalinowski, “Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry,” Journal of Automated Methods and Management in Chemistry, vol. 2008, pp. 1–8, 2008, doi: 10.1155/2008/937651.

[19] A. Tadese, P. A. Subramanian, A. Woldu, and R. Pal, “Electrochemical determination and comparison of ascorbic acid in freshly prepared and bottled fruit juices: A cyclic voltammetric study,” Journal of Chemical and Pharmaceutical Research, vol. 6, no. 5, pp. 880–888, 2014.

[20] A. M. Pisoschi and G. P. Negulescu, “Methods for total antioxidant activity determination: A review,” Biochemistry and Analytical Chemistry, vol. 1, no. 1, 2011, doi: 10.4172/2161-1009.1000106.

[21] M. Abdelrahim, S. Benjamin, L. Cubillana- Aguilera, I. Naranjo-Rodríguez, J. de Cisneros, J. Delgado, and Palacios-Santander, “Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a sonogel-carbon material as supporting electrode: Electroanalytical study in apple juice for babies,” Sensors, vol. 13, no. 4, pp. 4979–5007, 2013, doi: 10.3390/s130404979.

[22] S. Intarakamhang, C. Leson, W. Schuhmann, and A. Schulte, “A novel automated electrochemical ascorbic acid assay in the 24-well microtiter plate format,” Analytica Chimica Acta, vol. 687, no. 1, pp. 1–6, 2011, doi: 10.1016/j.aca.2010.11.023.

[23] F. Scholz, “Voltammetric techniques of analysis: The essentials,” Chemtexts, vol. 1, no. 17, pp. 1–24, 2015, doi: 10.1007/s40828-015-0016-y.

[24] J. Bordonaba and L. A. Terry, “Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: Towards a rapid sensor for antioxidant capacity and individual antioxidants,” Talanta, vol. 90, pp. 38–45, 2012, doi: 10.1016/j.talanta.2011.12.058.

[25] O. Makhotkina and P. A. Kilmartin, “The phenolic composition of sauvignon blanc juice profiled by cyclic voltammetry,” Electrochimica Acta, vol. 83, pp. 188–195, 2012, doi: 10.1016/j.electacta. 2012.07.101.

[26] J. Piljac-Žegarac, L. Valek, S. Martinez, and A. Belščak, “Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage,” Food Chemistry, vol. 113, no. 2, pp. 394–400, 2009, doi: 10.1016/j.foodchem. 2008.07.048.

[27] S. A. Shahamirifard, M. Ghaedi, Z. Razmi, and S. Hajati, “A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles-modified carbon paste electrode,” Biosensors and Bioelectronics, vol. 114, pp. 30–36, 2018, doi: 10.1016/j.bios.2018.05.009.

[28] A. J. Blasco, M. C. González, and A. Escarpa, “Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: Towards an electrochemical index of natural antioxidants,” Analytica Chimica Acta, vol. 511, no. 1, pp. 71–81, 2004, doi: 10.1016/j.aca.2004.01.038.

[29] R. K. Franklin, S. M. Martin, T. D. Strong, and R. B. Brown, “Chemical and biological systems: Chemical sensing systems for liquids,” in Reference Module in Materials Science and Materials Engineering. Amsterdam, Netherlands: Elsevier, 2016, doi: 10.1016/B978-0-12-803581- 8.00549-X.

[30] P. B. Deroco, J. F. Giarola, D. W. Junior, G. A. Lorga, and L. T. Kubota, “Paper-based electrochemical sensing devices,” Comprehensive Analytical Chemistry, vol. 89, pp. 91–137, 2020, doi: 10.1016/bs.coac.2019.11.001.

[31] A. A. Abdullah, Y. Yardım, and Z. Şentürk, “The performance of cathodically pretreated boron-doped diamond electrode in cationic surfactant media for enhancing the adsorptive stripping voltammetric determination of catecholcontaining flavonoid quercetin in apple juice,” Talanta, vol. 187, pp. 156–164, 2018, doi: 10.1016/j.talanta.2018.05.016.

[32] D. L. Vu, S. Žabčíková, L. Červenka, B. Ertek, and Y. Dilgin, “Sensitive voltammetric determination of natural flavonoid quercetin on a disposable graphite lead,” Food Technology and Biotechnology, vol. 53, no. 4, pp. 379–384, 2015, doi: 10.17113/ftb.53.04.15.4176.

[33] R. Abdel-Hamid and E. F. Newair, “Voltammetric determination of polyphenolic content in pomegranate juice using a poly (gallic acid)/ multiwalled carbon nanotube modified electrode,” Beilstein Journal of Nanotechnology, vol. 7, pp. 1104–1112, 2016, doi: 10.3762/bjnano.7.103.

[34] A. C. Silva, A. S. Lourenço, and M. C. de Araujo, “Simultaneous voltammetric determination of four organic acids in fruit juices using multiway calibration,” Food Chemistry, vol. 266, pp. 232– 239, 2018, doi: 10.1016/j.food chem. 2018.06.005.

[35] M. L. Yola, C. Göde, and N. Atar, “Determination of rutin by CoFe2O4 nanoparticles ionic liquid nanocomposite as a voltammetric sensor,” Journal of Molecular Liquids, vol. 246, pp. 350– 353, 2017, doi: 10.1016/j.molliq .2017.09.072.

[36] S. Yilmaz, S. Yagmur, and M. Sadıkoğlu, “Determination of ascorbic acid in table dosage forms and some fruit juices by DPV,” International Journal of Electrochemical Science, vol. 3, pp. 1534– 1542, 2008.

[37] M. Cuartero, J. A. Ortuño, P. Truchado, M. S. García, F. A. Tomás-Barberán, and M. I. Albero, “Voltammetric behaviour and squarewave voltammetric determination of the potent antioxidant and anticarcinogenic agent ellagic acid in foodstuffs,” Food Chemistry, vol. 128, no. 2, pp. 549–554, 2011, doi: 10.1016/j.foodchem. 2011.03.064.

[38] J. Hirsch, “Arsenic and lead are in your fruit juice: What you need to know. Consumer Reports,” 2019. [Online]. Available : https://www.consumer reports.org/food-safety/arsenic-and-lead-are-inyour- fruit-juice-what-you-need-to-know/

[39] M. Malakootian, H. Abolghasemi, and H. Mahmoudi- Moghaddam, “A novel electrochemical sensor based on the modified carbon paste using Eu3+ − doped NiO for simultaneous determination of Pb (II) and Cd (II) in food samples,” Journal of Electroanalytical Chemistry, vol. 876, p. 114474, 2020, doi: 10.1016/j.jele chem.2020.114474.

[40] K. Ramki and P. Sakthivel, “A novel electrochemical platform based on indenoindole for selective detection of Cu2+ ions in punica granatum fruit juice,” Journal of Electroanalytical Chemistry, vol. 861, no. 12, 2020, Art. no. 113936, doi : 10. 1016/j.jelechem.2020.113936.
[41] W. Zhang, C. Liu, F. Liu, X. Zou, Y. Xu, and X. Xu, “A smart-phone-based electrochemical platform with programmable solid-statemicrowave flow digestion for determination of heavy metals in liquid food,” Food Chemistry, vol. 303, 2020, Art. no. 125378, doi: 10.1016/j. foodchem.2019.125378.

[42] A. Magnier, V. Fekete, J. Van Loco, F. Bolle, and M. Elskens, “Speciation study of aluminium in beverages by competitive ligand exchange– adsorptive stripping voltammetry,” Talanta, vol. 122, pp. 30–35, 2014, doi: 10.1016/j.talanta.2013.12.051.

[43] S. Sobhanardakani, A. Farmany, and S. Abbasi, “A new modified multiwalled carbon nanotube paste electrode for quantification of tin in fruit juice and bottled water samples,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 3214–3216, 2014, doi: 10.1016/j.jiec. 2013.12.001.

[44] L. Yu, Y. Mao, and L. Qu, “Simple voltammetric determination of rhodamine B by using the glassy carbon electrode in fruit juice and preserved fruit,” Food Analytical Methods, vol. 6, no. 6, pp. 1665– 1670, 2013, doi: 10.1007/s12161-013-9580-1.

[45] W. Detpisuttitham, C. Phanthong, S. Ngamchana, P. Rijiravanich, and W. Surareungchai, “Electrochemical detection of salicylic acid in pickled fruit/vegetable and juice,” Journal of Analysis and Testing, vol. 4, no. 4, pp. 291–297, 2020, doi: 10.1007/s41664-020-00127-y.
[46] E. M. Silva, R. M. Takeuchi, and A. L. Santos, “Carbon nanotubes for voltammetric determination of sulphite in some beverages,” Food Chemistry, vol. 173, pp. 763–769, 2015, doi: 10.1016/j.food chem.2014.10.10.

[47] M. Tefera, M. Tessema, S. Admassie, E. I. Iwuoha, T. T. Waryo, and P. G. Baker, “Electrochemical determination of phenothrin in fruit juices at graphene oxide-polypyrrole modified glassy carbon electrode,” Sensing and Bio-Sensing Research, vol. 21, pp. 27–34, 2018, doi: 10.1016/j.sbsr. 2018.09.003.

[48] D. D. Souza and S. Machado, “Electrochemical detection of the herbicide paraquat in natural water and citric fruit juices using microelectrodes,” Analytica Chimica Acta, vol. 546, no. 1, pp. 85– 91, 2005, doi: 10.1016/j.aca.2005.05.020.

[49] T. Thriveni, J. R. Kumar, D. Sujatha, and N. Sreedhar, “Voltammetric determination of the herbicides nitralin and oryzalin in agricultural formulations, vegetables and grape juice samples,” Food Chemistry, vol. 104, no. 3, pp. 1304–1309, 2007, doi: 10.1016/j.foodchem. 2006.10.014.

[50] R. Rapini, A. Cincinelli, and G. Marrazza, “Acetamiprid multidetection by disposable electrochemical DNA aptasensor,” Talanta, vol. 161, pp. 15–21, 2016, doi: 10.1016/j.talanta. 2016.08.026.

[51] E. M. Maximiano, C. A. L. Cardoso, and G. J. Arruda, “Simultaneous electroanalytical determination of thiram and carbendazim in samples of fresh fruit uices in the presence of surfactants,” Food Analytical Methods, vol. 13, no. 1, pp. 119– 130, 2019, doi: 10.1007/s12161-019-01550-3.

[52] M. Sakthivel, R. Sukanya, and S. M. Chen, “Fabrication of europium doped molybdenum diselenide nanoflower based electrochemical sensor for sensitive detection of diphenylamine in apple juice,” Sensors and Actuators B: Chemical, vol. 273, pp. 616–626, 2018, doi: 10.1016/j. snb.2018.06.094.

Full Text: PDF

DOI: 10.14416/j.asep.2022.02.010

Refbacks

  • There are currently no refbacks.