Oil-palm Based Nanocellulose Reinforced Thermoplastic Polyurethane for Plastic Encapsulation of Biomedical Sensor Devices: Water Absorption, Thickness Swelling and Density Properties
Abstract
Keywords
[1] L. Lamanna, F. Rizzi, V. R. Bhethanabotla, and M. D. Vittorio, “Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film,” Biosensors and Bioelectronics, vol. 163, p. 112164, 2020.
[2] S. Kumari, S. Mohapatra, and R. S. Moirangthem, “Development of flexible plasmonic plastic sensor using nanograting textured laminating film,” Materials Research Express, vol. 4, no. 2, p. 25008, 2017.
[3] K. Park, P. Tran, N. Deaton, and J. P. Desai, “Multi-walled carbon nanotube (MWCNT)/ PDMS-based flexible sensor for medical applications,” in 2019 International Symposium on Medical Robotics (ISMR), 2019, pp. 1–8.
[4] Q. Xue, Z. Li, Q. Wang, W. Pan, Y. Chang, and X. Duan, “Nanostrip flexible microwave enzymatic biosensor for noninvasive epidermal glucose sensing,” Nanoscale Horizons, vol. 5, no. 6, pp. 934–943, 2020.
[5] P. K. Singh and A. Singal, “Reducing the hygroscopic swelling in MEMS sensor using different mold materials,” International Journal of Electrical and Computer Engineering, vol. 10, no.1, pp. 494–499, 2020.
[6] T. Someya, Z. Bao, and G. G. Malliaras, “The rise of plastic bioelectronics,” Nature, vol. 540, no. 7633, pp. 379–385, 2016. [7] D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, “Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics,” Journal of The Electrochemical Society, vol. 150, no. 7, p. G412, 2003.
[8] M. Rasheed, M. Jawaid, B. Parveez, A. Zuriyati, and A. Khan, “Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre,” International Journal of Biological Macromolecules, vol. 160, pp. 183–191, 2020.
[9] M. D. Alotabi, B. A. Alshammari, N. Saba, O. Y. Alothman, L. K. Kian, A. Khan, and M. Jawaid, “Microcrystalline cellulose from fruit bunch stalk of date palm: Isolation and characterization,” Journal of Polymers and the Environment, vol. 28, no. 6, pp. 1766–1775, 2020.
[10] A. Khan, M. Jawaid, L. K. Kian, A. A. P. Khan, and A. M. Asiri, “Isolation and production of nanocrystalline cellulose from conocarpus fiber,” Polymers (Basel), vol. 13, no. 11, p. 1835, 2021.
[11] A. Khan, A. M. Asiri, M. Jawaid, and N. Saba, “Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites,” Carbohydrate Polymers, vol. 239, p. 116248, 2020.
[12] M. Asad, N. Saba, A. M. Asiri, M. Jawaid, E. Indarti, and W. D. Wanrosli, “Preparation and characterization of nanocomposite films from oil palm pulp nanocellulose/poly (vinyl alcohol) by casting method,” Carbohydrate Polymers, vol. 191, pp. 103–111, 2018.
[13] C. F. Mok, Y. C. Ching, F. Muhamad, N. A. Abu Osman, and R. Singh, “Poly(vinyl alcohol)- α-chitin composites reinforced by oil palm empty fruit bunch fiber-derived nanocellulose,” International Journal of Polymer Analysis and Characterization, vol. 22, no. 4, pp. 294–304, 2017.
[14] Y. C. Ching, A. Rahman, K. Y. Ching, N. L. Sukiman, and H. C. Cheng, “Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica,” BioResources, vol. 10, no. 2, pp. 3364–3377, 2015.
[15] N. A. Nasimudeen, S. Karounamourthy, J. Selvarathinam, S. M. K. Thiagamani, H. Pulikkalparambil, S. Krishnasamy, and C. Muthukumar, “Mechanical, absorption and swelling properties of vinyl ester based natural fibre hybrid composites,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 680– 688, 2021, doi: 10.14416/j.asep.2021.08.006.
[16] M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber-based green composites: Processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, no. 4, pp. 689–718, 2021, doi: 10.14416/j.asep. 2021.09.005.
[17] N. Lisdayana, F. Fahma, T. C. Sunarti, and E. S. Iriani, “Thermoplastic starch–PVA nanocomposite films reinforced with nanocellulose from oil palm empty fruit bunches (OPEFBs): Effect of starch type,” Journal of Natural Fibers, vol. 17, no. 7, pp. 1069–1080, 2020.
[18] M. Khalifa, S. Anandhan, G. Wuzella, H. Lammer, and A. R. Mahendran, “Thermoplastic polyurethane composites reinforced with renewable and sustainable fillers–a review,” Polymer-Plastics Technology and Materials, vol. 59, no. 16, pp. 1751–1769, 2020.
[19] A. Atiqah, M. Jawaid, S. M. Sapuan, M. R. Ishak, M. N. M. Ansari, and R. A. Ilyas, “Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites,” Journal of Materials Research and Technology, vol. 8, no. 5, pp. 3726–3732, Sep. 2019, doi: 10.1016/j.jmrt.2019.06.032.
[20] M. R. Amri, C. T. Guan, S. S. Osman Al-Edrus, F. M. Yasin, and S. F. Mohamad, “Effect of cellulose nanofibrils on the properties of jatropha oilbasedwaterborne polyurethane nanocomposite film,” Polymers (Basel), vol. 13, no. 9, 2021, doi: 10.3390/polym13091460.
[21] K. Kępa, N. Amiralian, D. J. Martin, and L. Grøndahl, “Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption,” Polymer (Guildf), vol. 222, 2021, doi: 10.1016/j. polymer.2021.123659.
[22] E. Ogunsona, S. Hojabr, R. Berry, and T. H. Mekonnen, “Nanocellulose-triggered structural and property changes of acrylonitrile-butadiene rubber films,” International Journal of Biological Macromolecules, vol. 164, pp. 2038–2050, 2020, doi: 10.1016/j.ijbiomac.2020.07.202.
[23] A. G. de Souza, G. F. de Lima, V. K. Rangari, and D. dos Santos Rosa, “Investigation of surfacepegylated nanocellulose as reinforcing agent on PBAT biodegradable nanocomposites,” Polymer Composites, vol. 41, no. 10, pp. 4340–4352, 2020, doi: 10.1002/pc.25716.
[24] K. D. H. N. Kahavita, A. M. P. B. Samarasekara, D. A. S. Amarasinghe, and L. Karunanayake, “Nanofibrillated cellulose reinforced polypropylene composites: Influence of silane (SI-69) surface modification,” Cellulose Chemistry and Technology, vol. 54, no. 7–8, pp. 789–797, 2020, doi: 10.35812/CelluloseChemTechnol.2020.54.78.
[25] T. B. Shalom, Y. Nevo, D. Leibler, Z. Shtein, C. Azerraf, S. Lapidot, and O. Shoseyov, “Cellulose nanocrystals (CNCs) induced crystallization of Polyvinyl Alcohol (PVA) super performing nanocomposite films,” Macromolecular Bioscience, vol. 19, no. 3, p. e1800347, 2019, doi: 10.1002/ mabi.201800347.
[26] P. Zhang, Y.-Y. He, D. Gao, Y. Cai, and B. Liu, “Hydrolytic and thermal degradation of polyethylene glycol compatibilized poly(lactic acid)-nanocrystalline cellulose bionanocomposites,” Journal of Applied Polymer Science, vol. 136, no. 2, 2019, doi: 10.1002/app.46933.
[27] E. Espinosa, D. Filgueira, A. Rodríguez, and G. Chinga-Carrasco, “Nanocellulose-based inks— effect of alginate content on the water absorption of 3D printed constructs,” Bioengineering, vol. 6, no. 3, p. 65, 2019.
[28] A. A. Septevani, A. Rifathin, A. A. Sari, Y. Sampora, G. N. Ariani, and D. Sondari, “Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation,” Carbohydrate Polymers, vol. 229, p. 115433, 2020.
[29] H. Mohit and V. A. M. Selvan, “Effect of a novel chemical treatment on the physico-thermal properties of sugarcane nanocellulose fiber reinforced epoxy nanocomposites,” International Polymer Processing, vol. 35, no. 2, pp. 211–220, 2020, doi: 10.3139/217.3855.
[30] T. S. Franco, R. M. J. Amezcua, A. V. Rodrìguez, S. G. Enriquez, M. R. Urquíza, E. M. Mijares, and G. Bolzon de Muniz, “Carboxymethyl and nanofibrillated cellulose as additives on the preparation of chitosan biocomposites: Their influence over films characteristics,” Journal of Polymers and the Environment, vol. 28, no. 2, pp. 676–688, 2020, doi: 10.1007/s10924-019- 01639-0.
[31] R. A. Ilyas, S. M. Sapuan, A. Atiqah, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, N. M. Nurazzi, M. S. N. Atikah, M. N. M. Ansari, M. R. M. Asyraf, A. B. M. Supian, and H. Ya, “Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties,” Polymer Composites, vol. 41, no. 2, pp. 459–467, 2020.
[32] P. Zhang, Y. Lu, M. Fan, P. Jiang, and Y. Dong, “Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil-based waterborne polyurethane,” Journal of Applied Polymer Science, vol. 136, no. 47, 2019, doi: 10.1002/app.48228.
[33] R. Syafiq, S. M. Sapuan, and M. R. M. Zuhri, “Antimicrobial activity, physical, mechanical and barrier properties of sugar palm based nanocellulose/ starch biocomposite films incorporated with cinnamon essential oil,” Journal of Materials Research and Technology, vol. 11, pp. 144–157, 2021.
[34] A. Atiqah, M. Jawaid, M. R. Ishak, and S. M. Sapuan, “Moisture absorption and thickness swelling behaviour of sugar palm fibre reinforced thermoplastic polyurethane,” Procedia Engineering, vol. 184, pp. 581–586, 2017, doi: 10.1016/j. proeng.2017.04.142.
[35] A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, “Physical properties of silane-treated sugar palm fiber reinforced thermoplastic polyurethane composites,” in IOP Conference Series: Materials Science and Engineering, Jun. 2018, vol. 368, no. 1, doi: 10.1088/1757-899X/368/1/012047.
DOI: 10.14416/j.asep.2022.02.001
Refbacks
- There are currently no refbacks.