Influence of Incident Energy on Sisal/Epoxy Composite Subjected to Low Velocity Impact and Damage Characterization Using Ultrasonic C-Scan
Abstract
Keywords
[1] K. Lau, P. Hung, M.-H. Zhu, and D. Hui, “Properties of natural fibre composites for structural engineering applications,” Composites Part B: Engineering, vol. 136, pp. 222–233, 2018.
[2] S. M. Rangappa, S. Siengchin, and H. N. Dhakal “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol 13, no. 3, pp. 183–184, 2020, doi: 10.14416/j.asep. 2020.06.001.
[3] M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, “Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview,” Composites Part B: Engineering, vol. 43, no. 7, pp. 2883–2892, 2012.
[4] S. H. S. M. Fadzullah, S. N. N. Ramli, Z. Mustafa, A. S. Razali, D. Sivakumar, and I. Ismail, “Low velocity impact behaviour of pineapple leaf fibre reinforced polylactic acid biocomposites,” The International Journal of Advanced Manufacturing Technology, vol. 14, no. 1, pp. 1–12, 2020.
[5] T. Q. T. Hoang and F. Touchard, “Non-woven flax fibre reinforced polypropylene: Static and low velocity impact behaviour,” Polymers and Polymer Composites, vol. 21, no. 5, pp. 287–298, 2013.
[6] C. Scarponi, F. Sarasini, J. Tirillo, L. Lampani, T. Valente, and P. Gaudenzi, “Low-velocity impact behaviour of hemp fibre reinforced bio-based epoxy laminates,” Composites Part B: Engineering, vol. 91, pp. 162–168, 2016.
[7] H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, “The low velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites,” Composite Structures, vol. 81, no. 4, pp. 559–567, 2007.
[8] H. N. Dhakal, Z. Y. Zhang, N. Bennett, and P. N. B. Reis, “Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity,” Composite Structures, vol. 94, no. 9, pp. 2756–2763, 2012.
[9] A. R. A. Hani, M. S. Hashim, T. Y. Lim, M. Mariatti, and R. Ahmad, “Impact behaviour of woven coir-epoxy composite: Effects of woven density and woven fabric treatment,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 230, no. 1, pp. 240–251, 2016.
[10] H. N. Dhakal, M. Skrifvars, K. Adekunle, and Z. Y. Zhang, “Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading,” Composites Science and Technology, vol. 92, pp. 134–141, 2014.
[11] H. N. Dhakal, V. Arumugam, A. Aswinraj, C. Santulli, Z. Y. Zhang, and A. Lopez-Arraiza, “Influence of temperature and impact velocity on the impact response of jute/UP composites,” Polymer Testing, vol. 35, pp. 10–19, 2014.
[12] K. Senthilkumar, N. Saba, N. Rajini, M. Chandrasekar, M. Jawaid, S. Siengchin, and O. Y. Alotmane, “Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review,” Construction and Building Materials, vol. 174, 2018, doi: 10.1016/j.conbuildmat.2018.04.143.
[13] V. Mahesh, A. Nilabh, S. Joladarashi, and S. M. Kulkarni, “Analysis of impact behaviour of sisalepoxy composites under low velocity regime,” Revue des Composites et des Matériaux Avancés, vol. 31, pp. 57–63, 2021.
[14] C. Militello, F. Bongiorno, G. Epasto, and B. Zuccarello, “Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers,” Composite Structures, vol. 253, p. 112744, 2020.
[15] K. I. Ismail, M. T. H. Sultan, A. U. M. Shah, M. Jawaid, and S. N. A. Safri, “Low velocity impact and compression after impact properties of hybrid bio-composites modified with multiwalled carbon nanotubes,” Composites Part B: Engineering, vol. 163, pp. 455–463, 2019.
[16] G. Belingardi and R. Vadori, “Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates,” International Journal of Impact Engineering, vol. 27, no. 2, pp. 213– 229, 2002.
[17] K. S. Ahmed, S. Vijayarangan, and A. Kumar, “Low velocity impact damage characterization of woven jute—glass fabric reinforced isothalic polyester hybrid composites,” Journal of Reinforced Plastics and Composites, vol. 26, no. 10, pp. 959– 976, 2007.
[18] F. Sarasini, J. Tirillò, S. D'Altilia, T. Valente, C. Santulli, F. Touchard, L. Chocinski-Arnault, D. Mellier, L. Lampani, and P. Gaudenzi, “Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact,” Composites Part B: Engineering, vol. 91, pp. 144–153, 2016.
[19] I. Fahmi, M. S. A. Majid, M. Afendi, E. A. Helmi, and J. A. M. Haameem, “Low-velocity impact responses of Napier fibre/polyester composites,” International Journal of Automotive and Mechanical Engineering, vol. 13, p. 3226, 2016.
[20] M. Ravandi, W. S. Teo, L. Q. N. Tran, M. S. Yong, and T. E. Tay, “Low velocity impact performance of stitched flax/epoxy composite laminates,” Composites Part B: Engineering, vol. 117, pp. 89– 100, 2017.
[21] V. Fiore, T. Scalici, F. Sarasini, J. Tirilló, and L. Calabrese, “Salt-fog spray aging of jute-basalt reinforced hybrid structures: Flexural and low velocity impact response,” Composites Part B: Engineering, vol. 116, pp. 99–112, 2017.
[22] C. S. Kumar, V. Arumugam, H. N. Dhakal, and R. John, “Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/ epoxy composites,” Composite Structures, vol. 125, pp. 407–416, 2015.
[23] T. Segreto, R. Teti, and V. Lopresto, “Nondestructive testing of low-velocity impacted composite material laminates through ultrasonic inspection methods,” in Characterizations of Some Composite Materials. London: IntechOpen, 2018, pp. 45–66.
[24] I. Papa, V. Lopresto, G. Simeoli, A. Langella, and P. Russo, “Ultrasonic damage investigation on woven jute/poly (lactic acid) composites subjected to low velocity impact,” Composites Part B: Engineering, vol. 115, pp. 282–288, 2017, doi: 10.1016/j.compositesb.2016.09.076.
DOI: 10.14416/j.asep.2021.07.005
Refbacks
- There are currently no refbacks.