Page Header

Chemical Pretreatment of Lignocellulosic Biomass for the Production of Bioproducts: An Overview

Mohd Nor Faiz Norrrahim, Rushdan Ahmad Ilyas, Norizan Mohd Nurazzi, Mohd Saiful Asmal Rani, Mahamud Siti Nur Atikah, Siti Shazra Shazleen

Abstract


Lignocellulosic biomass has attracted great interest from researchers. It was due to the abundance of this valuable material which can be converted into value-added materials such as nanocellulose, biocomposites, bioelectricity, biohydrogen and biosugars. Lignocellulosic biomass is consisting of the three major components which are cellulose, hemicellulose and lignin. In order to utilize lignocellulosic biomass for bioproducts manufacturing, they need to be pretreated prior to further processing. Pretreatment can be carried out either by mechanical, chemical, biological or combination of all these methods. Chemical pretreatment is the common method used to pretreat the lignocellulosic biomass in order to completely or partially remove the components. During the past few years, a large number of chemical pretreatment including lime, acid, steam explosion, sulfur dioxide explosion, ammonia fiber explosion, ionic liquid and others have been discovered to be efficient pretreatment of biomass. Several types of chemical pretreatment of fibers and their future direction and also challenges were tackled in this review. This review could be beneficial for future directions in the pretreatment of fiber for the development of several products.

Keywords



[1] R. A. Ilyas, S. M. Sapuan, and M. R. Ishak, “Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga pinnata),” Carbohydrate Polymers, vol. 181, pp. 1038–1051, Feb. 2018, doi: 10.1016/j.carbpol.2017.11.045.

[2] R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, “Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites,” Carbohydrate Polymers, vol. 202, pp. 186–202, Dec. 2018, doi: 10.1016/j.carbpol.2018.09.002.
[3] R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, “Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior,” International Journal of Biological Macromolecules, vol. 123, pp. 379– 388, Feb. 2019, doi: 10.1016/j.ijbiomac.2018. 11.124.

[4] Q. Wu, T. C. Qiang, G. Zeng, H. Zhang, Y. Huang, and Y. Wang, “Sustainable and renewable energy from biomass wastes in palm oil industry: A case study in Malaysia,” International Journal of Hydrogen Energy, vol. 42, no. 37, pp. 23871–23877, 2017, doi: 10.1016/j.ijhydene.2017.03.147.
[5] N. I. A. A. Nordin, H. Ariffin, Y. Andou, M. A. Hassan, Y. Shirai, H. Nishida, W. Z. W. Yunus, S. Karuppuchamy, and N. A. Ibrahim, “Modification of oil palm mesocarp fiber characteristics using superheated steam treatment,” Molecules (Basel, Switzerland), vol. 18, no. 8, pp. 9132–9146, Jan. 2013, doi: 10.3390/molecules18089132.

[6] F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, “Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk,” Cellulose, vol. 18, no. 2, pp. 443–450, 2011, doi: 10.1007/ s10570-010-9480-0.

[7] H. Ariffin, M. N. F. Norrrahim, T. A. T. Yasim- Anuar, H. Nishida, M. A. Hassan, N. A. Ibrahim, and W. M. Z. W. Yunus, “Oil palm biomass cellulosefabricated polylactic acid composites for packaging applications,” in Bionanocomposites for Packaging Applications. New York: Springer, 2018, pp. 95–105.

[8] N. M. Nurazzi, M. R. M. Asyraf, A. Khalina, N. Abdullah, H. A. Aisyah, S. Rafiqah, F. A. Sabaruddin, S. H. Kamarudin, M. N. F. Norrrahim, R. A. Ilyas, and S. M. Sapuan, “A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications,” Polymers, vol. 13, no. 4, p. 646, 2021.

[9] A. A. B. Omran, A. A. B. A. Mohammed, S. M. Sapuan, R. A. Ilyas, M. R. M. Asyraf, S. S. R. Koloor, and M. Petrů, “Micro- and nanocellulose in polymer composite materials: A review,” Polymers, vol. 13, no. 2, p. 231, Jan. 2021, doi: 10.3390/polym13020231.

[10] G. Y. S. Mtui, “Recent advances in pretreatment of lignocellulosic wastes and production of value added products,” African Journal of Biotechnology, vol. 8, no. 8, pp. 1398–1415, 2009.

[11] M. R. Zakaria, M. N. F. Norrrahim, S. Hirata, and M. A. Hassan, “Hydrothermal and wet disk milling pretreatment for high conversion of biosugars from oil palm mesocarp fiber,” Bioresource Technology, vol. 181, pp. 263–269, 2015, doi: 10.1016/j.biortech.2015.01.072.

[12] P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, “Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production,” Industrial and Engineering Chemistry Research, vol. 48, no. 8, pp. 3713–3729, 2009, doi: 10.1021/ie801542g.

[13] S. Thakur, B. Shrivastava, S. Ingale, R. C. Kuhad, and A. Gupte, “Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment,” 3 Biotech, vol. 3, no. 5, pp. 365– 372, 2013.

[14] M. Dehghani, K. Karimi, and M. Sadeghi, “Pretreatment of rice straw for the improvement of biogas production,” Energy and Fuels, vol. 29, no. 6, pp. 3770–3775, 2015, doi: 10.1021/acs. energyfuels.5b00718.

[15] M. Rani, S. Rudhziah, A. Ahmad, and N. Mohamed, “Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber,” Polymers, vol. 6, no. 9, pp. 2371–2385, Sep. 2014, doi: 10.3390/ polym6092371.

[16] M. R. Zakaria, S. Fujimoto, S. Hirata, and M. A. Hassan, “Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis,” Applied Biochemistry and Biotechnology, vol. 173, no. 7, pp. 1778–1789, 2014, doi: 10.1007/ s12010-014-0964-5.

[17] H. P. S. A. Khalil, Y. Davoudpour, N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid, “Production and modification of nanofibrillated cellulose using various mechanical processes: A review,” Carbohydrate Polymers, vol. 99, pp. 649–665, 2014, doi: 10.1016/j.carbpol. 2013.08.069.

[18] M. N. F. Norrrahim, H. Ariffin, M. A. Hassan, N. A. Ibrahim, W. M. Z. W. Yunus, and H. Nishida, “Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production,” International Journal of Nanotechnology, vol. 16, pp. 668–679, 2019.

[19] T. A. T. Yasim-anuar, H. Ariffin, M. N. F. Norrrahim, and M. A. Hassan, “Factors affecting spinnability of oil palm mesocarp fiber cellulose solution for the production of microfiber,” BioResources, vol. 12, no. 1, pp. 715–734, 2017.
[20] F. Norrrahim, S. M. Sapuan, T. A. T. Yasim- Anuar, F. N. M. Padzil, N. S. Sharip, L. Ng, L. N. Megashah, S. S. Shazleen, N. F. A. Rahim, R. Syafiq, and R. A. Ilyas, “Antimicrobial studies on food packaging materials,” in Food Packaging. Florida: CRC Press, 2020, pp. 141–170.

[21] M. N. F. Norrrahim, H. Ariffin, T. A. T. Yasim- Anuar, F. Ghaemi, M. A. Hassan, N. A. Ibrahim, J. L. H. Ngee, and W. M. Z. W. Yunus, “Superheated steam pretreatment of cellulose affects its electrospinnability for microfibrillated cellulose production,” Cellulose, vol. 25, no. 7, pp. 3853– 3859, 2018, doi: 10.1007/s10570-018-1859-3.

[22] R. Ilyas, S. Sapuan, M. Atikah, M. Asyraf, S. A. Rafiqah, H. Aisyah, N. M. Nurazzi, and M. Norrrahim, “Effect of hydrolysis time on the morphological, physical, chemical, and thermal behavior of sugar palm nanocrystalline cellulose (Arenga pinnata (Wurmb.) Merr),” Textile Research Journal, vol. 91, no. 1–2, pp. 152–167, 2021.
[23] R. A. Ilyas, S. M. Sapuan, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, M. Asrofi, M. S. N. Atikah, M. R. M. Huzaifah, M. A. Radzi, A. M. N. Azammi, M. A. Shaharuzaman, N. M. Nurazzi, E. Syafri, H. S. Nasmi, M. N. F. Norrrahim, and R. Jumaidin, “Sugar palm (Arenga pinnata (Wurmb.) Merr)cellulosic fibre hierarchy: A comprehensiveapproach from macro to nano scale,” Journal of Materials Research and Technology, vol. 8, no. 3, pp. 2753–2766, 2019, doi: 10.1016/j. jmrt.2019.04.011.

[24] R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, “Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre,” BioResources, vol. 12, no. 4, pp. 8734–8754, 2017, doi: 10.15376/biores.12.4.8734-8754.

[25] E. Syafri, Sudirman, Mashadi, E. Yulianti, Deswita, M. Asrofi, H. Abral, S. M. Sapuan, R. A. Ilyas, and A. Fudholi, “Effect of sonication time on the thermal stability, moisture absorption, and biodegradation of water hyacinth (Eichhornia crassipes) nanocellulose-filled bengkuang (Pachyrhizus erosus) starch biocomposites,” Journal of Materials Research and Technology, vol. 8, no. 6, pp. 6223–6231, Nov. 2019, doi: 10.1016/j.jmrt.2019.10.016.

[26] K. Ziemiński, I. Romanowska, and M. Kowalska, “Enzymatic pretreatment of lignocellulosic wastes to improve biogas production,” Waste management, vol. 32, no. 6, pp. 1131–1137, 2012.

[27] F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, vol. 7, no. 1, p. 72, 2017, doi: 10.1186/s13568-017-0375-4.

[28] A. B. Thomsen, A. Thygesen, V. Bohn, K. V. Nielsen, B. Pallesen, and M. S. Jørgensen, “Effects of chemical–physical pre-treatment processes on hemp fibres for reinforcement of composites and for textiles,” Industrial Crops and Products, vol. 24, no. 2, pp. 113–118, 2006.
[29] S. Kalia, A. Dufresne, B. M. Cherian, B. S. Kaith, L. Avérous, J. Njuguna, and E. Nassiopoulos, “Cellulose-based bio- and nanocomposites: A review,” International Journal of Polymer Science, vol. 2011, pp. 1–35, 2011, doi: 10.1155/ 2011/837875.

[30] R. A. Ilyas, S. M. Sapuan, M. L. Sanyang, M. R. Ishak, and E. S. Zainudin, “Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A review,” Current Analytical Chemistry, vol. 14, no. 3, pp. 203–225, May 2018, doi: 10.2174/15 73411013666171003155624.

[31] M. Jonoobi, J. Harun, P. M. Tahir, A. Shakeri, S. Saifulazry, and M. D. Makinejad, “Physicochemical characterization of pulp and nanofibers from kenaf stem,” Materials Letters, vol. 65, no. 7, pp. 1098–1100, 2011, doi: 10.1016/j.matlet. 2010.08.054.

[32] W. Chen, H. Yu, Y. Liu, Y. Hai, M. Zhang, and P. Chen, “Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process,” Cellulose, vol. 18, no. 2, pp. 433–442, 2011, doi: 10.1007/s10570- 011-9497-z.

[33] A. Alemdar and M. Sain, “Isolation and characterization of nanofibers from agricultural residues - Wheat straw and soy hulls,” Bioresource Technology, vol. 99, no. 6, pp. 1664–1671, 2008, doi: 10.1016/j.biortech.2007.04.029.

[34] M. Jonoobi, J. Harun, A. Shakeri, M. Misra, and K. Oksmand, “Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers,” BioResources, vol. 4, no. 2, pp. 626– 639, 2009, doi: 10.15376/biores.4.2.626-639.

[35] F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, “Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB),” Cellulose, vol. 17, no. 5, pp. 977–985, Aug. 2010, doi: 10.1007/ s10570-010-9436-4.

[36] A. Anukam and J. Berghel, “Biomass pretreatment and characterization: A review,” in Biomass. London, UK: IntechOpen, 2020.

[37] S. Behera, R. Arora, N. Nandhagopal, and S. Kumar, “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 36, pp. 91–106, 2014, doi: 10.1016/j. rser.2014.04.047.

[38] M. N. F. Norrrahim, N. A. M. Kasim, V. F. Knight, F. A. Ujang, N. Janudin, M. A. I. A. Razak, N. A. A. Shah, S. A. M. Noor, S. H. Jamal, K. K. Ong, and W. M. Z. W. Yunus, “Nanocellulose: The next super versatile material for the military,” Materials Advances, 2021, doi: 10.1039/D0MA01011A.

[39] M. N. F. Norrrahim, N. A. M. Kasim, V. F. Knight, M. S. M. Misenan, N. Janudin, N. A. A. Shah, N. Kasim, W. Y. W. Yusoff, S. A. M. Noor, S. H. Jamal, K. K. Ong, and W. M. Z. W. Yunus, “Nanocellulose: A bioadsorbent for chemical contaminant remediation,” RSC Advances, vol. 11, pp. 7347–7368, 2021, doi: 10.1039/ D0RA08005E.
[40] T. A. T. Yasim-Anuar, H. Ariffin, M. N. F. Norrrahim, M. A. Hassan, Y. Andou, T. Tsukegi, and H. Nishida, “Well-dispersed cellulose nanofiber in low density polyethylene nanocomposite by liquid-assisted extrusion,” Polymers, vol. 12, pp. 1–17, 2020.

[41] I. M. Fareez, A. H. Jasni, and M. N. F. Norrrahim, “Nanofibrillated cellulose based bio-phenolic composites,” in Phenolic Polymers Based Composite Materials. New York: Springer Singapore, 2020, pp. 139–151.

[42] M. N. F. Norrrahim, H. Ariffin, T. A. T. Yasim- Anuar, M. A. Hassan, N. A. Ibrahim, W. M. Z. W. Yunus, and H. Nishida, “Performance evaluation of cellulose nanofiber with residual hemicellulose as a nanofiller in polypropylene-based nanocomposite,” Polymers, vol. 13, no. 7, p. 1064, 2021, doi: 10.3390/polym13071064.

[43] N. S. Sharip, T. A. T. Yasim-Anuar, M. N. F. Norrrahim, S. S. Shazleen, N. M. Nurazzi, S. M. Sapuan, and R. A. Ilyas, “A review on nanocellulose composites in biomedical application,” in Composites in Biomedical Applications. Florida: CRC Press, 2020, pp. 161–190.

[44] M. N. F. Norrrahim, H. Ariffin, T. A. T. Yasim- Anuar, M. A. Hassan, H. Nishida, and T. Tsukegi, “One-pot nanofibrillation of cellulose and nanocomposite production in a twin-screw extruder,” IOP Conference Series: Materials Science and Engineering, vol. 368, pp. 1–9, 2018.
[45] R. A. Ilyas, M. S. Sapuan, M. N. Norizan, M. N. F. Norrrahim, R. Ibrahim, M. S. N. Atikah, M. R. M. Huzaifah, A. M. Radzi, S. Izwan, A. M. N. Azammi, R. Jumaidin, Z. M. A. Ainun, A. Atiqah, M. R. M. Asyraf, and L. K. Kian, “Macro to nanoscale natural fiber composites for automotive components: Research, development, and application,” in Biocomposite and Synthetic Composites for Automotive Applications. Amsterdam, Netherland: Woodhead Publishing Series, 2020.

[46] F. A. Sabaruddin, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, S. H. Lee, K. Abdan, N. Mazlan, A. S. M. Roseley, and H. P. S. Abdul Khalil, “The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylenereinforced kenaf core hybrid polymer bionanocomposites,” Polymers, vol. 13, no. 1, p. 116, Dec. 2020, doi: 10.3390/polym13010116.

[47] Y. Kang, Y. Ahn, S. H. Lee, J. H. Hong, M. K. Ku, and H. Kim, “Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid,” Fibers and Polymers, vol. 14, no. 4, pp. 530–536, 2013, doi: 10.1007/s12221- 013-0530-8.

[48] Y. Kang, Y. Ahn, S. H. Lee, J. H. Hong, M. K. Ku, and H. Kim, “Lignocellulosic nanofiber prepared by alkali treatment and electrospinning using ionic liquid,” Fibers and Polymers, vol. 14, no. 4, pp. 530–536, 2013, doi: 10.1007/s12221-013- 0530-8.

[49] S. Arola, J. M. Malho, P. Laaksonen, M. Lille, and M. B. Linder, “The role of hemicellulose in nanofibrillated cellulose networks,” Soft Matter, vol. 9, no. 4, pp. 1319–1326, 2013.

[50] S. Iwamoto, K. Abe, and H. Yano, “The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics,” Biomacromolecules, vol. 9, no. 3, pp. 1022–1026, Mar. 2008, doi: 10.1021/bm701157n.

[51] I. Duchesne, E. Hult, U. Molin, G. Daniel, T. Iversen, and H. Lennholm, “The influence of hemicellulose on fibril aggregation of kraft pulp fibres as revealed by FE-SEM and CP/MAS 13C-NMR,” Cellulose, vol. 8, no. 2, pp. 103–111, 2001.

[52] H. A. Aisyah, M. T. Paridah, S. M. Sapuan, R. A. Ilyas, A. Khalina, N. M. Nurazzi, S. H. Lee, and C. H. Lee, “A comprehensive review on advanced sustainable woven natural fibre polymer composites,” Polymers, vol. 13, no. 3, p. 471, Feb. 2021, doi: 10.3390/polym13030471.

[53] R. S. Ayu, A. Khalina, A. S. Harmaen, K. Zaman, T. Isma, Q. Liu, R. A. Ilyas, and C. H. Lee, “Characterization study of empty fruit bunch (EFB) fibers reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol composite sheet,” Polymers, vol. 12, no. 7, p. 1571, Jul. 2020, doi: 10.3390/polym12071571.

[54] C. H. Lee, S. H. Lee, F. N. M. Padzil, Z. M. A. Ainun, M. N. F. Norrrahim, and K. L. Chin, “Biocomposites and nanocomposites,” in Composite Materials. Florida: CRC Press, 2021, pp. 29–60.
[55] S. Alsubari, M. Y. M. Zuhri, S. M. Sapuan, M. R. Ishak, R. A. Ilyas, and M. R. M. Asyraf, “Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties,” Polymers, vol. 13, no. 3, p. 423, Jan. 2021, doi: 10.3390/polym 13030423.

[56] R. A. Ilyas, S. M. Sapuan, M. M. Harussani, M. Y. A. Y. Hakimi, M. Z. M. Haziq, M. S. N. Atikah, M. R. M. Asyraf, M. R. Ishak, M. R. Razman, N. M. Nurazzi, M. N. F. Norrrahim, H. Abral, and M. Asrofi, “Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications,” Polymers, vol. 13, no. 8, p. 1326, Apr. 2021, doi: 10.3390/polym13081326.

[57] J. Wu, D. Yu, C. M. Chan, J. Kim, and Y. W. Mai, “Effect of fiber pretreatment condition on the interfacial strength and mechanical properties of wood fiber/PP composites,” Journal of Applied Polymer Science, vol. 76, no. 7, pp. 1000–1010, 2000.

[58] S. S. Suradi, R. M. Yunus, M. D. H. Beg, and Z. A. M. Yusof, “Influence pre-treatment on the properties of lignocellulose based biocomposite,” in National Conference on Postgraduate Research, Universiti Malaysia Pahang, 2009, pp. 67–78. [59] M. M. Kabir, “Effects of chemical treatments on hemp fibre reinforced polyester composites,” Ph.D. dissertation, Centre of Excellence in Engineered Fibre Composites, Faculty of Engineering and Surveying, University of Southern Queensland, 2012.

[60] J. Lin, Z. Yang, X. Hu, G. Hong, S. Zhang, and W. Song, “The effect of alkali treatment on properties of dopamine modification of bamboo fiber/ polylactic acid composites,” Polymers, vol. 10, no. 4, 2018.

[61] L. Berglund, M. Noël, Y. Aitomäki, T. Öman, and K. Oksman, “Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics,” Industrial Crops and Products, vol. 92, pp. 84–92, 2016.

[62] M. Deba, A. Zain, and N. A. M. Salleh, “Biosugar production from oil palm mesocarp fiber (OPMF) using Viscozyme,” ARPN Journal of Engineering and Applied Sciences, vol. 12, no. 21, pp. 6225– 6237, 2006.

[63] J. Byun, Y. L. Cha, S. M. Park, K. S. Kim, J. E. Lee, and Y. G. Kang, “Lignocellulose pretreatment combining continuous alkaline single-screw extrusion and ultrasonication to enhance biosugar production,” Energies, vol. 13, no. 21, p. 5636, 2020.

[64] N. Sritrakul, S. Nitisinprasert, and S. Keawsompong, “Evaluation of dilute acid pretreatment for bioethanol fermentation from sugarcane bagasse pith,” Agriculture and Natural Resources, vol. 51, no. 6, pp. 512–519, 2017.
[65] M. Jedrzejczyk, E. Soszka, M. Czapnik, A. M. Ruppert, and J. Grams, “Physical and chemical pretreatment of lignocellulosic biomass,” in Second and Third Generation of Feedstocks: The Evolution of Biofuels. Amsterdam, Netherlands: Elsevier, 2019, pp. 143–196, doi: 10.1016/B978- 0-12-815162-4.00006-9.

[66] Y. Chen, R. R. Sharma-Shivappa, D. Keshwani, and C. Chen, “Potential of agricultural residues and hay for bioethanol production,” Applied Biochemistry and Biotechnology, vol. 142, no. 3, pp. 276–290, 2007, doi: 10.1007/s12010-007- 0026-3.

[67] A. M. J. Kootstra, H. H. Beeftink, E. L. Scott, and J. P. M. Sanders, “Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw,” Biochemical Engineering Journal, vol. 46, no. 2, pp. 126–131, 2009, doi: 10.1016/j.bej.2009.04.020.

[68] P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review,” Bioresource Technology, vol. 101, no. 13, pp. 4851–4861, 2010, doi: 10.1016/j.biortech.2009.11.093.

[69] E. Hernández, A. García, M. López, J. Puls, J. C. Parajó, and C. Martín, “Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods,” Industrial Crops and Products, vol. 44, pp. 227–231, 2013, doi: 10.1016/j.indcrop.2012.11.001.

[70] Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: A review,” Bioresource Technology, vol. 83, no. 1, pp. 1–11, May 2002.

[71] H. S. Hafid, F. N. Omar, J. Zhu, and M. Wakisaka, “Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment,” Carbohydrate Polymers, vol. 260, p. 117789, 2021, doi: 10.1016/j.carbpol.2021. 117789.

[72] M. P. Gundupalli, H. Kajiura, T. Ishimizu, and D. Bhattacharyya, “Alkaline hydrolysis of coconut pith: Process optimization, enzymatic saccharification, and nitrobenzene oxidation of Kraft lignin,” Biomass Conversion and Biorefinery, 2020, doi: 10.1007/s13399-020-00890-z.

[73] G. Gonzalez, J. Lopez-Santin, G. Caminal, and C. Sola, “Hemicellulose at moderate temperature: A simplified kinetic model,” Biotechnology and Bioengineering, vol. 28, pp. 288–293, 1986.

[74] M. S. A. Rani, M. Mohammad, M. S. Sua’it, A. Ahmad, and N. S. Mohamed, “Novel approach for the utilization of ionic liquid-based cellulose derivative biosourced polymer electrolytes in safe sodium-ion batteries,” Polymer Bulletin, 2020, Art. no. 0123456789, doi: 10.1007/s00289-020- 03382-2.

[75] V. S. Chang and M. T. Holtzapple, “Fundamental factors affecting biomass enzymatic reactivity,” Twenty-First Symposium on Biotechnology for Fuels and Chemicals, vol. 84, pp. 5–37, 2000, doi: 10.1007/978-1-4612-1392-5_1.
[76] D. Jiang, X. Ge, Q. Zhang, X. Zhou, Z. Chen, H. Keener, and Y. Li, “Comparison of sodium hydroxide and calcium hydroxide pretreatments of giant reed for enhanced enzymatic digestibility and methane production,” Bioresource Technology, vol. 244, no. June, pp. 1150–1157, 2017, doi: 10.1016/j.biortech.2017.08.067.

[77] T. H. Kim, F. Taylor, and K. B. Hicks, “Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment,” Bioresource Technology, vol. 99, no. 13, pp. 5694–5702, 2008, doi: 10.1016/j.biortech.2007.10.055.

[78] T. H. Kim, J. S. Kim, C. Sunwoo, and Y. Y. Lee, “Pretreatment of corn stover by aqueous ammonia,” Bioresource Technology, vol. 90, no. 1, pp. 39–47, 2003, doi: 10.1016/S0960- 8524(03)00097-X.

[79] M. T. Holtzapple, E. P. Ripley, and M. Nikolaou, “Saccharification, fermentation, and protein recovery from low‐temperature AFEX‐treated coastal bermudagrass,” Biotechnology and Bioengineering, vol. 44, no. 9, pp. 1122–1131, 1994, doi: 10.1002/bit.260440914.

[80] V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnology Advances, vol. 29, no. 6, pp. 675–685, 2011, doi: 10.1016/j. biotechadv.2011.05.005.

[81] J. Y. Park, R. Shiroma, M. I. Al-Haq, Y. Zhang, M. Ike, Y. Arai-Sanoh, A. Ida, M. Kondo, and K. Tokuyasu, “A novel lime pretreatment for subsequent bioethanol production from rice straw - Calcium capturing by carbonation (CaCCO) process,” Bioresource Technology, vol. 101, no. 17, pp. 6805–6811, 2010, doi: 10.1016/j. biortech.2010.03.098.

[82] A. Hernández-Guzmán, I. M. Navarro-Gutiérrez, P. A. Meléndez-Hernández, J. U. Hernández-Beltrán, and H. Hernández-Escoto, “Enhancement of alkaline-oxidative delignification of wheat straw by semi-batch operation in a stirred tank reactor,” Bioresource Technology, vol. 312, p. 123589, 2020, doi: 10.1016/j.biortech.2020.123589.

[83] P. Harmsen, S. Lips, and R. Bakker, “Pretreatment of lignocellulose for biotechnological production of lactic acid; Research review,” Wageningen UR Food & Biobased Research, vol. 1384, pp. 1–104, 2013.

[84] N. Ali, A. S. Giwa, M. Abdalla, and X. Liu, “Alkaline hydrogen peroxide pretreatment of bamboo culm for improved enzymatic release of reducing sugars using recombinant cellulases,” Cellulose, vol. 27, pp. 769–779, 2019, doi: 10.1007/s10570-019-02829-8.

[85] M. J. Taylor, H. A. Alabdrabalameer, and V. Skoulou, “Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels,” Sustainability, vol. 11, no. 13, p. 3604, 2019, doi: 10.3390/ su11133604.

[86] W. C. Neely, “Factors affecting the pretreatment of biomass with gaseous ozone,” Biotechnology and Bioengineering, vol. 26, no. 1, pp. 59–65, 1984, doi: 10.1002/bit.260260112.

[87] D. Ben‐Ghedalia and J. Miron, “The effect of combined chemical and enzyme treatments on the saccharification and in vitro digestion rate of wheat straw,” Biotechnology and Bioengineering, vol. 23, no. 4, pp. 823–831, 1981, doi: 10.1002/ bit.260230412.

[88] P. F. Vidal and J. Molinier, “Ozonolysis of lignin - Improvement of in vitro digestibility of poplar sawdust,” Biomass, vol. 16, no. 1, pp. 1–17, 1988, doi: 10.1016/0144-4565(88)90012-1.

[89] J. Quesada, M. Rubio, and D. Gómez, “Ozonation of lignin rich solid fractions from corn stalks,” Journal of Wood Chemistry and Technology, vol. 19, no. 1, pp. 115–137, 1999, doi: 10.1080/02773819909349603.

[90] J. O. Ortega, J. A. M. Vargas, O. M. Perrone, G. Metzker, E. Gomes, R. da Silva, and M. Boscolo, “Soaking and ozonolysis pretreatment of sugarcane straw for the production of fermentable sugars,” Industrial Crops and Products Products, vol. 145, p. 111595, 2020, doi: 10.1016/j.indcrop.2019. 111959.

[91] F. Van Rantwijk, R. M. Lau, and R. A. Sheldon, “Biocatalytic transformations in ionic liquids,” Trends in Biotechnology, vol. 21, no. 3, pp. 131–138, 2003, doi: 10.1016/S0167-7799(03)00008-8.

[92] K. Ninomiya, M. Abe, T. Tsukegi, K. Kuroda, Y. Tsuge, C. Ogino, K. Taki, T. Taima, J. Saito, M. Kimizu, K. Uzawa, and K. Takahashi, “Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites,” Carbohydrate Polymers, vol. 182, no. October 2017, pp. 8–14, 2018, doi: 10.1016/j.carbpol. 2017.11.003.

[93] J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, J. Su, and Y. Liu, “Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization,” Carbohydrate Polymers, vol. 90, no. 4, pp. 1609–1613, 2012, doi: 10. 1016/j.carbpol.2012.07.038.

[94] M. Imai, K. Ikari, and I. Suzuki, “High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment,” Biochemical Engineering Journal, vol. 17, no. 2, pp. 79–83, 2004, doi: 10.1016/S1369-703X(03)00141-4.

Full Text: PDF

DOI: 10.14416/j.asep.2021.07.004

Refbacks

  • There are currently no refbacks.