Statistical Study of the Influence of Fiber Content, Fiber Length and Critical Length in the Mechanical Behavior of Polymeric Composites Reinforced with Carica Papaya Fibers (CPFs)
Abstract
Keywords
[1] Y. Qin, “A brief description of textile fibers” in Medical Textile Materials. Amsterdam, Netherlands: Elsevier, 2016, pp. 23–42.
[2] H. V. S. Murthy, “Fibre characteristics,” in Introduction to Textile Fibres. New Delhi, India: Woodhead Publishing, 2016. pp 1–25.
[3] D. N. Saheb and J. P. Jog, “Natural fiber polymer composites: A review,” Advances in Polymer Technology, vol. 18, pp. 351–363, 1999.
[4] C. Santos, T. Santos, R. Fonseca, K. Melo, and M. Aquino, “Phenolic resin and its derivatives” in Phenolic Polymers Based Composite Materials. Singapore: Springer, 2020, pp. 1–11.
[5] T. Santos, C. Santos, R. Fonseca, K. Melo, and M. Aquino, “Natural fibres based phenolic composites” in Phenolic Polymers Based Composite Materials. Singapore: Springer, 2020, pp. 65–75.
[6] M. El-Kashouti, S. Elhadad, and K. Abdel-Zaher, “Printing technology on textile fibers: Review,” Journal of Textiles Coloration and Polymer Science, vol 16,, pp. 129–138, 2019.
[7] I. Markova, “Natural cellulosic fibers” in Textile Fiber Microscopy: A Practical Approach. New Jersey: Willey, 2019, pp. 1–30.
[8] A. Jain, D. Rastogi, and B. Chanana, “Bast and leaf fibres: A comprehensive review,” International Journal of Home Science, vol. 2, no. 1, pp. 313–317, 2016.
[9] C. Santos, “Extração e caracterização das fibras do mamoeiro,” M.S. thesis, Engenharia Têxtil, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil, 2019.
[10] Y.-S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E. J. Panakkal, and M. Sriariyanun, “Recent situation and progress in biorefining process of lignocellulosic biomass: Toward green economy,” Applied Science Engineering Progress, vol. 13, no. 4, pp. 299–311, 2020, doi : 10.14416/j.asep.2020.08.002.
[11] H. Jamshaid, “Basalt fiber and its applications,” Textile Engineering and Fashion Technology, vol. 1, pp. 254–255, 2017.
[12] S. Amico, “Vegetable fibers as multifunctional materials,” Matéria (Rio Janeiro), vol. 15, pp. 355– 363, 2010.
[13] R. Dunne, D. Desai, R. Sadiku, and J. Jayaramudu, “A review of natural fibres, their sustainability and automotive applications,” Journal of Reinforced Plastics and Composites, vol. 17, pp. 1041–1050, 2016.
[14] C. R. Costa, A. Ratti, and B. Curto, “Product development using vegetable fibers,” International Journal of Design & Nature and Ecodynamics, vol. 9, pp. 237–244, 2014.
[15] K. Moreira, T. Santos, C. Santos, R. Fonseca, M. Melo, and M. Aquino, “Analysis of the physical and mechanical properties of a biobased composite with sisal powder,” in Biobased Composites: Processing, Characterization, Properties, and Applications. New Jersey: Wiley, 2021, pp. 143–151.
[16] K. Melo, T. Santos, C. Santos, R. Fonseca, N. Dantas, and M. Aquino, “Influence of Fiber content in the water absorption and mechanical properties of sisal fiber powder composites,” in Hybrid Fiber Composites. New Jersey: Wiley, 2020, pp. 369–380.
[17] K. Melo, T. Santos, C. Santos, R. Fonseca, N. Dantas, and M. Aquino, “Experimental analysis of styrene, particle size, and fiber content in the mechanical properties of sisal fiber powder composites,” in Hybrid Fiber Composites. New Jersey: Wiley, 2020, pp. 351–367.
[18] A. Saravanakumaar, A. Senthilkumar, S. S. Saravanakumar, S. M. Rangappa, and A. Khan, “Impact of alkali treatment on physico-chemical, thermal, structural and tensile properties of Carica papaya bark fibers,” International Journal Polymer Analysis and Characterization, vol, 23, pp. 529–536, 2018.
[19] A. Kempe, A. Göhre, T. Lautenschläger, A. Rudolf, M. Eder, and C. Neinhuis, “Evaluation of bast fibres of the stem of Carica papaya L. for application as reinforcing material in green composites,” Annual Research & Review in Biology, vol 6, pp. 245–252, 2015.
[20] A. S. Kumaar, A. Senthilkumar, T. Sornakumar, S. S. Saravanakumar, and V. Arthanariesewaran, “Physicochemical properties of new cellulosic fiber extracted from Carica papaya bark,” Journal of Natural Fibers, vol. 16, pp. 175–184, 2017.
[21] K. Melo, T. Santos, C. Santos, R. Fonseca, N. Lucena, J. Medeiros, and M. Aquino, “Study of the reuse potential of the sisal fibers powder as a particulate material in polymer composites,” Journal of Materials Research and Technology, vol. 8, pp. 4019–4025, 2019.
[22] L. Zílio, M. Dias, T. Santos, C. Santos, R. Fonseca, A. Amaral, and M. S. Aquino, “Characterization and statistical analysis of the mechanical behavior of knitted structures used to reinforce composites: Yarn compositions and float stitches,” Journal of Materials Research and Technology, vol. 9, pp. 8323–8336, 2020.
[23] P. Joseph, K. Joseph, and S. Thomas, “Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites,” Composites Science and Technology, vol. 59, no. 11, pp. 1625–1640, 1999.
[24] L. Rohen, F. Margem, S. Monteiro, C. Vieira, B. Madeira de Araujo, and E. Lima, “Ballistic efficiency of an individual epoxy composite reinforced with sisal fibers in multilayered armor,” Materials Research, vol. 18, pp. 55–62, 2015.
[25] T. Sousa, M. Costa, R. Guilherme, W. Orcini, L. Holgado, A. Magdalena, S. Cantazaro-Guimarães, and A. Kinoshita, “Polyurethane derived from Ricinus Communis as graft for bone defect treatments,” Polímeros, vol. 28, pp. 246–255, 2018.
[26] M. Laranjeira, C. Rezende, M. Sá, and C. Silva, “Implantes de resina de poliuretana vegetal (Ricinus communis) na tração linear, fixação e fusão vertebral no cão: Estudo experimental,” Arquivo Brasileiro de Medicina Veterinária e Zootecnia, vol. 56, pp. 602–609, 2004.
[27] A. Casaril, E. Gomes, M. Soares, M. Fredel, and H. Al-Qureshi, “Análise micromecânica dos compósitos com fibras curtas e partículas,” Matéria (Rio Janeiro), vol 12, pp. 408–419, 2007.
[28] T. Santos, C. Santos, M. Aquino, F. Oliveira, and J. Medeiros, “Statistical study of performance properties to impact of Kevlar® woven impregnated with Non-Newtonian Fluid (NNF),” Journal of Materials Research and Technology, vol. 9, pp. 3330–3339, 2020.
[29] R. Nonato and B. Bonse, “A study of PP/PET composites: Factorial design, mechanical and thermal properties,” Polymer Testing, vol 56, pp. 167–173, 2016.
[30] L. Á. Olveira, J. Santos, T. Panzera, R. Freire, L. Vieira, and J. Rubio, “Investigations on short coir fibre–reinforced composites via full factorial design,” Polymers and Polymers Composites, vol 26, pp. 391–399, 2018.
[31] S. Salman, Z. Leman, M. Sultan, M. Ishak, and F. Cardona, “Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced PVB film produced using a hot press technique,” International Journal of Polymer Science, vol. 2016, pp. 1–11, 2016.
[32] D. Romanzini, A. Lavoratti, H. Ornaghi, S. Amico, and A. Zattera, “Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites,” Materials & Design, vol. 47, pp. 9–15, 2013.
[33] C. Capela, S. Oliveira, J. Pestana, and J. Ferreira, “Effect of fiber length on the mechanical properties of high dosage carbon reinforced,” Procedia Structural Integrity, vol. 5, pp. 539– 546, 2017.
[34] S. Rangappa, S. Siengchin, and H. Dhakal, “Greencomposites: Ecofriendly and sustainability,” Appliede Science Engineering Progress, vol 13, no. 3, p. 183, 2020, doi: 10.14416/j.asep.2020.06.001.
[35] S. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, vol 12, vol. 3, p. 149, 2019, doi: 10.14416/j.asep.2019.03.002.
[36] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile materials for future,” Applied Science and Engineering Progress, vol 12, no. 4, p. 223, 2019, doi: 10.14416/j.asep.2019.09.002.
DOI: 10.14416/j.asep.2021.07.002
Refbacks
- There are currently no refbacks.