A Comprehensive Review on the Drying Kinetics of Common Tubers
Abstract
Sun-drying has been conventionally used in the production of tuber-derived commodities such as cassava, potato, sweet potato, and yam. Recent developments in the drying process involves the use of different drying equipment to improve quality and profitability. The importance of drying parameters in the operation of drying equipment necessitates drying kinetic studies on common tubers. This article aims to review the drying kinetics studies conducted on common tubers. Particular interest is on the effect of the drying process parameters like temperature and velocity of heating air medium, the physico-chemical pretreatment method, and sample preparation on the drying rate and time. The different best fit drying kinetic models for specific tubers have also been extensively studied. The role of drying process parameters and best fit model equations on the design of the drying equipment has been emphasized.
Keywords
[1] U. E. Inyang, I. O. Oboh, and B. R. Etuk, “Kinetic models for drying techniques — Food materials,” Advances in Chemical Engineering and Science, vol. 8, no. 2, pp. 27–48, 2018, doi: 10.4236/ aces.2018.82003.
[2] V. G. Belessiotis, “Sun and artificial air drying kinetics of some agricultural products,” Journal of Food Engineering, vol. 31, no. 1, pp. 35–46, 1997, doi: 10.1016/S0260 8774(96)00050-7.
[3] A. Souza, B. Steward, and C. Bern, “A modelica library for thin-layer drying of agricultural products,” in Proceedings of the American Modelica Conference, 2018, pp. 227–235, doi: 10.3384/ ECP18154227.
[4] W. Muhlbauer and J. Muller, Drying Atlas. Cambridge, England: Woodhead Publishing, 2020.
[5] A. Chandrasekara and T. J. Kumar, “Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits,” International Journal of Food Science, vol. 2016, 2016, doi.org/10.1155/ 2016/3631647.
[6] S. Naderinezhad, N. Etesami, A. P. Najafabady, and M. G. Falavarjani, “Mathematical modeling of drying of potato slices in a forced convective dryer based on important parameters,” Food Science and Nutrition, vol. 4, no. 1, pp. 110–118, 2016, doi: 10.1002/fsn3.258.
[7] J. Duangchen, S. Pathaveerat, S. Noypitak, and P. Jermwongruttanachai, “Effect of spray drying air temperature to the change of properties of skimmed coconut milk powder,” Applied Science and Engineering Progress, vol. 14, no. 2, 2020, doi: 10.14416/j.asep.2020.07.003.
[8] A. F. Taiwo and R. State, “Effects of drying parameters on the drying kinetics of fermented ground cassava using a rotary dryer,” International Journal of Food Engineering, vol. 6, no. 6, 2010, Art. no. 4, doi: 10.2202/1556-3758.1623.
[9] P. Pornpraipech, M. Khusakul, R. Singklin, P. Sarabhorn, and C. Areeprasert, “Effect of temperature and shape on drying performance of cassava chips,” Agriculture and Natural Resources, vol. 51, no. 5, pp. 402–409, 2018, doi: 10.1016/j.anres.2017.12.004.
[10] S. Ã. Lertworasirikul, “Drying kinetics of semi-finished cassava crackers: A comparative study,” Food Science and Technology, vol. 41, no.8, pp. 1360–1371, 2008, doi: 10.1016/j.lwt. 2007.09.009.
[11] O. Onyelucheya, “Drying kinetics of cassava slices,” in Nigerian Drying Symposium Series 1, 2003, pp.183–192.
[12] R. D. Andrade, O. A. Perez, and H. Toscano, “Drying kinetics of two yam (Dioscorea alata),” Dyna, vol.79, no. 171, pp. 175–182, 2012.
[13] H. W. Xiao, X. D. Yao, H. Lin, W. X. Yang, J. S. Meng, and Z. J. Gao, “Effect of SSB (Superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices,” Journal of Food Process Engineering, vol. 35, no. 3, pp. 1–21, Jun. 2012, doi: 10.1111/j.1745-4530.2010.00594.x.
[14] N. J. Singh and R. K. Pandey, “Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.),” Food Bioproduct Process, vol. 90, no. 2, pp. 317–322, Apr. 2011, doi: 10.1016/j.fbp.2011.06.006.
[15] M. Y. Nasri and A. Belhamri, “Effects of the climatic conditions and the shape on the drying kinetics, Application to solar drying of potatocase of Maghreb’s region,” Journal of Cleaner Production, vol. 183, pp. 1241–1251, 2018, doi: 10.1016/j.jclepro.2018.02.103.
[16] M. U. H. Joardder, A. Karim, C. Kumar, and R. J. Brown, Establishing the Relationship between Drying Parameters and Dried Food Quality. USA: Springer, 2015.
[17] W. Q. Yan, M. Zhang, L. L. Huang, A. S. Mujumdar, and J. Tang, “Influence of microwave drying method on the characteristics of the sweet potato dices,” Journal of Food Processing and Preservation, vol. 37, no. 5, pp. 662–669, 2013, doi: 10.1111/j.1745-4549.2012.00707.x.
[18] K. M. Waananen and M. R. Okos, “Effect of porosity on moisture diffusion during drying of pasta,” Journal of Food Engineering, vol. 28, no. 2, pp. 121–137, 1996, doi: 10.1016/0260- 8774(94)00082-4.
[19] L. T. Gonçalves, N. R. Pereira, S. B. Almeida, S. de J. Freitas, and W. R. Waldman, “Microwave–hot air drying applied to selected cassava cultivars: Drying kinetics and sensory acceptance,” International Journal of Food Science & Technology, vol. 52, no. 2, pp. 389–397, 2017, doi: 10.1111/ijfs.13293.
[20] P. Pimpaporn, S. Devahastin, and N. Chiewchan, “Effects of combined pretreatments on drying kinetics and quality of potato chips undergoing low-pressure superheated steam drying,” Journal of Food Engineering, vol. 81, no. 2, pp. 318–329, 2007, doi: 10.1016/j.jfoodeng.2006.11.009.
[21] K. S. Srikanth, V. S. Sharanagat, Y. Kumar, R. Bhadra, L. Singh, P.K. Nema, and V. Kumar, “Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius),” LWT, vol. 99, no. 1, pp. 8–16, Jan. 2019, doi: 10.1016/j. lwt.2018.09.049.
[22] O. P. Sobukola, O. U. Dairo, and A. V. Odunewu, “Convective hot air drying of blanched yam slices,” International Journal of Food Science and Technology, vol. 43, no.7, pp. 1233–1238, Jul. 2008, doi: 10.1111/j.1365-2621.2007.01597.x.
[23] H. Ju, Q. Zhang, A. S. Mujumdar, X. Fang, H. Xiao, and Z. Gao, “Hot-air drying kinetics of yam slices under step change in relative humidity,” International Journal of Food Engineering, vol. 12, no. 8, pp. 783–792, Aug. 2016, doi: 10.1515/ijfe- 2015-0340.
[24] E. A. Kosasih, A. Zikri, and M. I. Dzaky, “Case studies in thermal engineering effects of drying temperature, airflow, and cut segment on drying rate and activation energy of elephant cassava,” Case Studies in Thermal Engineering, vol. 19, no. 3, p. 100633, 2020, doi: 10.1016/j.csite.2020.100633.
[25] T. Y. Tunde-Akintunde and A. A. Afon, “Modeling of hot-airdrying pretreated cassava chips,” Agricultural Engineering International: CIGR Journal, vol. 12, no. 2, pp. 35–41, Jun. 2010.
[26] B. A. Wahab, A. A. Adebowale, S. A. Sanni, O. P. Sobukola, A. O. Obadina, O. E. Kajihausa, M. O. Adegunwa, L. O. Sanni, and K. Tomlins, “Effect of species, pretreatments, and drying methods on the functional and pasting properties of highquality yam flour,” Food Science and Nutrition, vol. 4, no. 1, pp. 50–58, Jul. 2015, doi: 10.1002/ fsn3.260.
[27] M. A. Salgado, A. Lebert, H. S. Garcia, J. Muchnik, and J. J. Bimbenet, “Development of the characteristic drying curve for cassava chips in monolayer,” Drying Technology, vol. 12, no. 3, pp. 37–41, Dec. 2014, doi: 10.1080/073739394 08959984.
[28] T. Hidayat and Setyadjit, “Effect of pre-treatment on the physico-chemical characteristics of potato powder dried by drum dryer,” in IOP Conference Series: Earth Environmental Science, vol. 309, 2019, doi: 10.1088/1755-1315/309/1/012056.
[29] M. Ahmed, A. M. Sorifa, and J. B. Eun, “Effect of pretreatments and drying temperatures on sweet potato flour,” International Journal of Food Science and Technology, vol. 45, no. 4, pp. 726–732, Apr. 2010, doi: 10.1111/j.1365-2621. 2010.02191.x.
[30] R. Ostermeier, O. Parniakov, S. Töpfl, and H. Jäger, “Applicability of pulsed electric field (PEF) pre-treatment for a convective two-step drying process,” Foods, vol. 9, no. 4, pp. 9–12, Apr. 2020, doi: 10.3390/foods9040512.
[31] A. Olajedo, H.M.W. Qu, C. Zhou, B. Wu, X, Yang, and D. I. Onwude, “ Effects of ultrasound pretreatments on the kinetics of moisture loss and oil uptake during deep fat frying of sweet potato (Ipomea batatas),” Innovative Food Science and Emerging Technologies, vol. 43, no. 1, pp. 7–17, Jul. 2017.
[32] S. B. Bakal, K. H. Gedam, and G. P. Sharma, “Drying characteristics and kinetics of fluidized bed dried potato,” Cogent Food and Agriculture, vol. 1, no.1, pp. 127–135, Jan. 2010, doi: 10.1080/ 23311932.2015.1036485.
[33] L. P. Lijauco, “Drying kinetics of sweet potato chips in a forced convection tray-type dryer,” in 7th International Conference on Innovations in Chemical, Biological, Environmental and Food Sciences (ICBEFS-2017), Aug. 2017, pp. 35–41.
[34] E. E. Abano and R. S. Amoah, “Microwave and blanch- assisted drying of white yam (Dioscorea rotundata),” Food Science and Nutrition, vol. 3, no. 6, pp. 596–596, Jun. 2015, doi: 10.1002/ fsn3.249.
[35] S. Fang, L. Wang, and T. Wu, “Mathemaical modeling and effect of blanching pretreatment on the drying kinetics of chinese yam,” Chemical Industry and Chemical Engineering Quarterly, vol. 21, no. 4, pp. 511–518, Oct. 2015, doi: 10.2298/ CICEQ140816007F.
[36] L. A. Sanni and O. O. Odukogbe, “Mathematical modelling of thin-layer drying kinetics of cassava meal in a conductive rotary dryer,” Advance Journal of Food Science and Technology, vol. 12, no. 10, pp. 535–543, Aug. 2016, doi: 10.19026/ ajfst.12.3300.
[37] K. Blaise, W. Ferdinand, P. Gbaha, and S. Toure, “Mathematical modelling of the thin layer solar drying of banana, mango and cassava,” Energy, vol. 34, no. 10, pp. 1594–1602, 2009, doi: 10.1016/ j.energy.2009.07.005.
[38] B. D. Argo, S. Sandra, and U. Ubaidillah, “Mathematical modeling on the thin layer drying kinetics of cassava chips in a multipurpose convective-type tray dryer heated by a gas burner,” Journal of Mechanical Science and Technology, vol. 32, no. 7, pp. 3427–3435, Aug. 2018, doi: 10.1007/s12206-018-0646-2.
[39] W. T. De Carvalho and T. F. De Oliveira, “Drying and Technolog, vol. 34, no. 1, pp. 116–122, Mar. 2014.
[40] N. Leeratanarak, S. Devahastin, and N. Chiewchan, “Drying kinetics and quality of potato chips undergoing different drying techniques,” Journal of Food Engineering, vol. 77, no. 3, pp. 635–643, 2006, doi: 10.1016/j.jfoodeng.2005.07.022.
[41] D. Souza, O. Resende, L. de Moura, W. Ferreira, and J. W. D. S. Andrade, “Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.),” Engenharia Agricola, vol. 39, no. 2, pp. 176–181, 2019, doi: 10.1590/1809-4430eng. agric.v39n2p176-181/2019.
[42] A. R. Caparanga, R. A. L. Reyes, R. L. Rivas, F. C. De Vera, V. Retnasamy, and H. Aris, “Effects of air temperature and velocity on the drying kinetics and product particle size of starch from arrowroot (Maranta arundinacae),” in EPJ Web of Conferences, 2017, vol. 162, doi: 10.1051/ epjconf/201716201084.
[43] H. Ju, C. Law, X. Fang, H. Xiao, and Y. Liu, “Drying kinetics and evolution of sample’s core temperature and moisture distribution of yam slices (Dioscorea alata L.) during convective hot air drying,” Drying Technology, vol. 34, 2016, doi: 10.1080/07373937.2015.1105814.
[44] R. C. Reis, P. C. Correa, I. A. Devilla, E. S. Santos, D. P. R. Ascheri, A. C. O. Servulo, and A. B. M. Souza, “Drying of yam starch (Dioscorea ssp.) and glycerol filmogenic solutions at different temperatures,” LWT-Food Science and Technology, vol. 50, no. 2, pp. 651–656, 2013, doi: 10.1016/j. lwt.2012.07.033.
[45] T. Rubina, A. Aboltins, J. Palabinskis, and A. Jasinskas, “On the potatoes drying dynamics research,” Latvia University of Agriculture, vol. 15, no. 1, pp. 187–192, 2016.
[46] X. Song, M. Zhang, A. S. Mujumdar, and L. Fan, “Drying characteristics and kinetics of vacuum microwave–dried potato slices,” Drying Technology, vol. 27, no. 9, pp. 969–974, Jun. 2013, doi: 10.1080/07373930902902099.
[47] A. Harish, B. S. Vivek, R. Sushma, J. Monisha, and T. P. Krishna Murthy, “Effect of microwave power and sample thickness on microwave drying kinetics elephant foot yam (Amorphophallus Paeoniifolius),” American Journal of Food Science and Technology, vol. 2, no. 1, pp. 28–35, Jan. 2014, doi: 10.12691/ajfst-2-1-5.
[48] F. C. De Vera, L. A. B. Comaling, I. R. A. M. Lao, A. R. Caparanga, and Z. Sauli, “Kinetics, mass transport characteristics, and structural changes during air-drying of purple yam (Dioscorea Alata L.) at different process conditions,” The European Physical Journal Conferences, vol. 162, no. 1, 2017, doi: 10.1051/epjconf/201716201085.
[49] W. Jitwiriya, T. Chantrasmi, U. Nontakaew, and P. Yongyingsakthavorn, “Heat loss analysis of continous oven with outside conveyor chain,” Applied Science and Engineering Progress, vol. 14, no. 2, Jun. 2020, doi: 10.14416/j. asep.2020.07.003.
[50] R. Simpson, C. Ramírez, H. Nuñez, A. Jaques, and S. Almonacid, “Understanding the success of Page’s model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices,” Trends in Food Science & Technology, vol. 62, pp. 194–201, 2017, doi: 10.1016/j.tifs.2017.01.003.
[51] X. Wu, M. Zhang, Y. Ye, and D. Yu, “Influence of ultrasonic pretreatments on drying kinetics and quality attributes of sweet potato slices in infrared freeze drying (IRFD)” LWT-Food Science and Technology, vol. 131, no. 1, Jul. 2020, doi: 10.1016/j.lwt.2020.109801.
[52] R. R. Dinrifo, “Effects of pre-treatment drying kinetics of sweet potato slices,” Agricultural Engineering International, vol. 14, no. 3, pp. 136– 145, Sep. 2012.
DOI: 10.14416/j.asep.2021.03.003
Refbacks
- There are currently no refbacks.