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Abstract

Biomass is a sustainable renewable energy that can replace fossil fuels, reduce greenhouse gas
emissions, and be integrated into the energy structure of Thailand. Ultimate analysis measures the Higher
Heating Value (HHV) of chemical elements to determine the energy quantity of a fuel. The accuracy and
consistency of the out-of-sample data for the prediction model are essential for data-poor regions like
Thailand. The present study conducted three experiments to verify the consistency of the HHV models
using out-of-sample data. The published datasets were the treatments, with the accuracy stabilities being
the responses. Multiple situations of out-of-sample implementation were simulated. The results confirmed
accuracy inconsistencies in both linear and nonlinear HHV models. The models presented statistical
indifferences in the average error of the in-sample performance, while the higher moments of error
distribution remained distinct. All higher moments of the residuals of the model were different in the
out-of-sample data. The simulated examples indicated that previous models could not maintain the
accuracy of their training sets. Additionally, they could not provide an accurate prediction of the
biomass data of Thailand. Therefore, a practical dataset is necessary to retrain the HHV models before

implementation to ensure accurate HHV prediction in Thailand.
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1. Introduction

The highest proportion of global greenhouse
gases originate from heat and electricity generation
[1]. Hence, renewable energy technologies are
essential for reducing greenhouse gas emissions
and mitigating climate change [2]. In a developing
country like Thailand, the increased expenditure
on sustainable and affordable energy is already
included in the integrated energy blueprint policies,
and hence, the proportion of renewable energy used
in Thailand is projected to increase from 12% to
30% by 2036, of which 77.2% will be attributed to
biomass resources [3]. Therefore, active research is
being conducted in this field to realize the renew-
able energy goal [4], [5].

The energy value of fuels is usually defined
as the Higher Heating Value (HHV), which is the
total energy released during a combustion reaction,
including the evaporation and condensation of
water. Experimental procedures typically evaluate
the HHV through proximate and ultimate analyses.
The former method uses the fixed carbon, volatile
matter, and ash to estimate the heating value, while
the latter determines the energy of constituent
chemical elements. Based on the in-sample data,
the accuracy of ultimate analysis is superior to that
of proximate analysis [6], [7].

In Thailand, where biomass datasets are
unavailable, the model prediction power may not
be the same as that reported in earlier studies
[8]. Many factors affect the properties of biomass,
which include the species, growing area, rain, sun
exposure, and harvesting time. The HHV prediction
of the biomass of out-of-sample non-native species

may not be as accurate as that in earlier studies.

Therefore, the ultimate analysis, which provides
the highest in-sample accuracy, is essential for
evaluating the biomass energy yield of native
species. However, there are no studies on the
performance consistencies of out-of-sample data.

The accuracy of HHV models is often reported
differently in earlier studies. Boumanchar et al. [9]
compared their model with the linear models of
other studies [10]-[13]. However, the accuracies
stated in earlier studies were actually lower
than those reported. Additionally, the accuracy
degradation of linear models was observed in some
studies [14]-[16]. Therefore, these inconsistencies
in the accuracy need to be investigated.

The performance variabilities of nonlinear
models are challenging to clarify owing to insufficient
model information, unpublished datasets, and
unrevealed source codes for reproducing the results.
However, examining the performance consistency
of these models is necessary before implementing
the models for regions with insufficient data.

This study conducted experiments to examine
the performance consistency of the HHV models
reported in earlier studies on ultimate analysis.
The proxies of fifteen linear and nonlinear machine
learning models were investigated for their
accuracies through three experiments. First, random
searching constructed the highest accuracy models
for each learning algorithm. Then, these models
were treated as proxies of the HHV models in
earlier studies. The published datasets were used
as experimental treatments, while model accuracy
was evaluated as the response.

We assumed that the proxies were equivalent

to the nonlinear HHV models in earlier studies.
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Finally, the experiments were limited to the ultimate
analysis of the published datasets and the minimum
mean square error cost function. To the best of our
knowledge, no formal study has been conducted
on the consistency of the accuracy of HHV models.
The main contribution of this study is the verification
of the consistency and evaluation of HHV models.

The remainder of this study is organized as follows:
Section 2 describes the experimental design, the
model, and the datasets. The practical diagrams
and dataset overview are illustrated here. Section
3 presents the results and discussions pertaining
to arising inconsistencies. Finally, the performance
of the HHV models is inferred by comparing the
experimental and reported values. The last section

presents the conclusions of the study.

2. Materials and Methods
2.1 Accuracy Measurement

The Mean Square Error (MSE) (1) is the average
of the prediction error square. The square root of
this value is known as the RMSE (2). The minimum
MSE objective function implies a convex hypothesis
space solution and the minimum sum of error
square, while the RMSE is a proxy of the standard
error. Therefore, MSE and RMSE can indicate the
size and spread of the distribution simultaneously,
and were implemented as the primary measurement

tools in this study.

l N T N2
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The study used three other measurement tools
supporting the results; Mean Absolute Error (MAE),
average Absolute Error (44E), and Average Bias
Error (ABE), exhibited in Equations (3)-(5). However,
these indicators refer to the magnitude of the error
in their mean. Therefore, they are inferior to MSE
and RMSE.

2.2 Experimental Design

The study assumed that optimization schemes
affect the convergence rate and computational
time. Local optima typically arise from inappropriate
initial conditions. Therefore, differences in schemes
cannot affect the weight and bias vectors of the
optimal global solution.

Random searching can mimic earlier models
through MATLAB statistics and machine learning
toolbox. The source codes [17] were set as
“OptimizeHyperparameters” to “all.” and the
models with the lowest MSE values were considered
as proxies of those in earlier studies.

Fifteen models, exhibited in Table 1, were
considered in the experiments. Numbers 1-12
are the mimic models, whose objective functions
were the minimum MSE. However, the settings of
the adaptive neuro-fuzzy inference system (ANFIS,
number 13), multilayer perceptron (number 14), and
radial basis function (GA-RBF, number 15) follow
those in previous studies [18]-[20].
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Figure 1 Schematic flowchart representing the experiment to test the performance variation for the

out-of-sample data.

Table 1 Parameter settings for the biomass HHV models implemented in the 1st and 2nd experiments

No. Name Parameter Proxy
1. Stepwise regression Quadratic [21], [22]
2. Robust regression Quadratic [23]
3. Higher-Dimensional linear model Quadratic -

4. Generalized linear model (GLM) Quadratic -
5. Partial least square Linear -
6. Ridge regression Optimal /4, Quadratic -
7. Lasso regression Optimal /4, Quadratic -
8. Lasso GLM Optimal 4, Quadratic -
9. Support vector machine (SVM) OptimizeHyperparameter [24]

10. Gaussian process regression (GP) OptimizeHyperparameter -
11. Ensemble tree OptimizeHyperparameter [25]
12. Regression tree OptimizeHyperparameter [26]
13. ANFIS ANFIS-SC5 [18]
14. Multilayer perceptron MLP-II [19]
15. Radial basis function GA-RBF [20]
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+  This study

O Qian et al. [27]

Ghugare et al. [19]
Nhuchhen and Afzal [15]

Figure 2 Plot illustrating the datasets of the 1st and 2nd experiments.

This study set the range of A between 0.01 and
1,000 and then searched for the optimal value.

The accuracy consistency of the models was
verified through the three experiments illustrated
in Figures 1. Initially, the datasets considered the
independent variables assigned to the models
in Table 1. Then, three methodologies distinctly
inspected the consistency.

The first experiment returned the MSE rankings
of the dataset. Ranking similarity implied
performance consistency. The second experiment
produced the residual distributions. Distribution
equivalence indicated no differences in accuracy.

The last experiment examined the RMSE
variation in the out-of-sample data. It simulated
the situation when implementing the HHV model
to the out-of-sample data. However, earlier
studies reported the accuracy through various
measurements. The present study used their
models and an original training set to generate an

RMSE as a proxy for the one reported in earlier

studies. Then, the RMSE was computed for eight
other datasets and a Thailand biomass dataset to

check the variability.

2.3 Experimental Datasets and Models

Figure 2 describes the four datasets involved
in the 1st and 2nd experiments. The first was the
dataset used by Qian et al. [27], containing 78 raw
datapoints for proximate and ultimate analyses.
This dataset was a sub-dataset of another dataset
published previously [28]. The original dataset had
86 records. The dataset from Qian et al. [27] is
relatively compact and has been used in many
studies [24], [29], [30]. The second involved 536 raw
datapoints published by Ghugare et al. [19]. These
data were collected from an available biomass
database to train a biomass HHV model. Next was
a collection of published 206 raw datapoints from
Nhuchhen and Afzal [15] who used it to train their
HHV model after torrefaction; all three datasets

present values in percentage of dry basis.
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The last dataset was the dataset of an
ultimate analysis study [31]. It comprises 908 raw
dry datapoints from 22 published works. Duplicate
and mismatched records were cleaned by treating
the records published earlier as the correct data.
Therefore, the dataset used in this experiment
included the three datasets described above and
new records from the published work. Since the
dataset used in this study spread throughout the
domain, it is suitable to support biomass data.

Table 2 displays nine models and ten
datasets involved in the 3rd experiment. It included
a Thailand biomass sample and six additional earlier
studies from the past decade stacked with the three

datasets mentioned earlier.

3. Results and Discussion
3.1 Ranking Inconsistency

Table 3 ascendingly lists the five most

accurate prediction models according to the 20-fold
cross-validation. They indicate the most precise
prediction models for the four datasets. The table
also indicates that, in each treatment, the prediction
model with the highest-accuracy was different.
Therefore, there was no model with the highest
accuracy for all datasets. Consequently, the model
prediction power was inconsistent depending on
the treatment.

Most of the models listed in Table 3 are
nonlinear models. Therefore, the HHV models
were nonlinear. Stepwise linear regression
performed moderately well according to Qian
et al. [27] because this dataset has a sample size
of only 78, compared with the sample size of
908 in this study. Figure 3 and Table 4 indicate
the reason for the linear model not providing a
Unique Minimum Variance Unbiased Estimator
(UMVUE).

Table 2 Models and datasets for the performance variant examination in the 3rd experiment

Model HHV Model Dataset
Sample Size Year Source
| 0.3399C + 0.2590H 170 2020 [32]
I 32.9C + 162.7H - 16.20 - 954.4S + 1.408 33 2020 [21]
1L 0.2328C + 6.9703 171 2019 (9]
\% -4.9140 + 0.2611N + 0.4114C 39 2018 [33]
\Y 32.7934 + 0.0053C” - 0.5321C 206 2017 [15]
v 847.08 [% + Hj 78 2016 [27]
vil 0367C + — 228850 3'28830 +
2131C" -93299
CH-115971 91.531 232.698 263 2014 [19]
10.472H + 0.129CO  35.299 +N ' 77.545 + S
VIl 0.2949C + 0.8250H 53 2011 [10]
IX 430.2C-186.7H-127.4N + 178.6S + 184.20 — 2379.9 20 2005 (8]
Thailand Biomass - 7 2006 [34]

A. Kijkarncharoensin and S. Innet, “Performance Inconsistencies in Biomass Higher Heating Value Models for Ultimate

Analysis.”



MFENFIVINTNTTIDUNAMSEUATINTTD TN 34 aUuil 2 1w.8.-3.8. 2567
The Journal of KMUTNB., Vol. 34, No. 2, Apr.—Jun. 2024

Fraction in dry base (%)
o R
< < < <
R <‘ |~—-0H—HHH+Y e o

=)
=]

e [ S
S =3 =)

—
o

Ultimate Analysis

N HHV

Figure 3 Box plot of the article biomass data; carbon

(O), hydrogen (H), nitrogen (N), oxygen (O),
sulfur (S), and higher heating value (HHV).

Table 3 Top five ranking prediction models for each

dataset based on 20-fold cross-validation

Ghugare Nhuchhen Qian et al
This Study g and Afzal :
et al. [19] [27]
[15]
Lasso GP Lasso GLM PLS
(1.6747) (1.3879) (0.9022) (0.0001)
Lasso GLM Lasso Lasso GP
(1.9435) (1.4704) (0.9358) (0.0001)
Ridge Ridge Ridge Stepwise
(2.062) (1.4745) (0.97854) (0.0001)
E bl E bl
remble | Ensemble | gy | popus
99576 .0001
(2.0775) (1.5799) (0:99576) (0.0001
SVM GLM PLS Ridge
(2.1303) (1.6867) (1.03888) (0.0002)

Note: Values in the parenthesis are the MSE. The values
in italics and bold are the minimum values of the MSE in
each dataset.

Figure 3 shows box plots of the ultimate
analysis for the biomass data used in this study. All
predictors (C, H, N, O, and S) and response (HHV)
variables did not present normal distributions.

Therefore, the residuals from the linear combination

could not have a normal distribution.

Table 4 tabulates the parameter correlation
matrix. Collinearities existed among the features
in the ultimate analysis. These collinearities may
decrease or increase the regression coefficients
and their variances asymmetrically [35]. Therefore,
hypotheses tested using the regression coefficient

are likely to be biased.

Table 4 Correlation matrix of the parameters in the

ultimate analysis of the study dataset

C H N (6] S HHV
C ] 1.0000 [-0.1555[-0.1907|-0.5196| 0.0015 | 0.8733
H [-0.1555] 1.0000 [-0.0265| 0.4455 {-0.1716|-0.0707
N [-0.1907|-0.0265| 1.0000 |-0.2802| 0.2613 |-0.1241
O [-0.5196| 0.4455 [-0.2802| 1.0000 |-0.2909|-0.4510
S 10.0015|-0.1716] 0.2613 |-0.2909| 1.0000 | 0.0449
HHV | 0.8733 |-0.0707|-0.1241{-0.4510| 0.0449 | 1.0000

Correlation coefficients exhibit the level of
a linear relationship between two variables. The
correlation coefficient between H and HHV was
relatively low (-0.0707). Therefore, the linear
relationship between these two parameters is weak.
The association of biomass HHV was nonlinear.
The correlation matrix in Table 4 also supports the
nonlinear relationship reported previously [19], [36].
Additionally, the evidence of non-linearity contrasts
with the linear model reported in earlier studies
[10], [18], [36]. Therefore, in the ultimate analysis
approach, the classical linear regression could not
provide the UMVUE of the biomass HHV model.

3.2 Residual Distribution Dissimilarity
The influence of datasets on the model

prediction power can be inspected through the
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Model Residuals
|
>

Dataset

Figure 4 Box plots of the residual distribution

generated from 4 treatments.

residual boxplots in Figure 4. Unfortunately, the
severity in outliers indicated that none of the
residuals had a normal distribution. As the spread of
the outliers was different, the treatment residuals
had distinct variances. Therefore, the experiment
indicated the residual non-normality and variance
heteroscedasticity.

Table 5 presents the descriptive statistics of the
model residuals up to the fourth moment. It presents
the number of data, mean, median, skewness,
kurtosis, and standard error (S.E.). The confidence
interval (Cl) is referred to as the mean interval. The
results show that the residuals in all datasets have

a statistically zero mean at a = 0.01 and an equal

median. However, the skew is non-zero, and kurtosis
is more significant than 3.0. A high degree of kurtosis
causes a fat tail distribution, which is a risk factor for
financial investments. This distribution indicates a
high probability that the actual HHV will differ from
the predicted value.

The experimental models were conditioned on
the given learning algorithms and training data. The
results indicate that if the models are accurate for
these conditions, then the average errors will not
different statistically. However, the treatments

affected the higher moment of the residual distribution.

3.3 Out-of-sample Performance Variability

Table 6 reports the performance variability
between the in-sample and out-of-sample data
examined in the 3rd experiment. Table 2 presents
the experimental models and datasets.

The results show that the accuracy is volatile
whenimplementing the models on the out-of-sample
data. Additionally, the models in the literature
are not accurate for Thai biomass. Therefore, the
experimental results indicate the necessity of
creating a Thai biomass model [8]. The supplementary
material contains the experimental results on the
MSE, MAE, AAE, ABE, RZ, and the Kolmogorov-

Smirnov test.

Table 5 Descriptive statistics of the model residuals in each dataset at a = 0.01

Dataset Count Mean Median | Skewness | Kurtosis S.E. Conﬁder(l:;; Interval
This Study 13,620 | -0.0305 0.0458 0.1541 255470 0.0146 -0.0681 0.0070
Ghugare et al. [19] 8,040 -0.0241 | -0.0410 0.5913 34.2030 0.0191 -0.0735 0.0252
Nhuchhen and Afzal [15] 3,090 -0.0154 0.0230 -3.6176 |180.59000| 0.0310 -0.0952 0.0644
Qian et al. [27] 1,170 0.0214 0.0008 2.3558 49.6550 0.0166 -0.0215 0.0642
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Table 6 Variation in the model RMSE for the 3rd experiment on the entire sample data

RMSE Dataset
Model | Il 1l v \ Vi Vil Vil IX Thai Biomass
I 2.0544 | 23605 | 1.9548 | 1.4095 | 2.2698 | 0.7384 | 1.6528 | 1.1757 | 1.5404 2.5352
Il 4.8129 | 1.4999 | 55912 | 4.8214 | 3.0600 | 2.0984 | 58466 | 2.3816 | 11.1104 4.3861
M1l 1.9605 | 4.3366 | 1.6994 | 1.6249 | 3.0289 | 1.2408 | 2.0561 | 1.4952 | 2.7263 2.8605
% 24765 | 1.2479 | 2.5629 | 0.4218 | 1.8251 | 0.5496 | 1.5973 | 2.3465 | 2.3355 2.9690
\ 2.4490 | 1.5919 | 24193 | 1.2581 | 1.6360 | 0.8173 | 1.8299 | 2.3859 | 10.1084 3.8905
VI 22675 | 4.4418 | 2.2381 | 0.7379 | 2.4430 | 0.1694 | 1.8319 | 1.0063 | 0.9755 3.0934
VI 2.0567 | 0.7731 | 2.2862 | 0.9093 | 1.9108 | 0.4353 | 1.0660 | 1.1034 | 2.6735 3.2024
VIl 22095 | 43160 | 2.1697 | 0.8118 | 2.4539 | 0.1785 | 1.8069 | 0.9878 | 1.0397 2.9956
IX 7.0166 | 2.0597 | 7.3475 | 5.0215 | 4.7715 | 5.4259 | 56177 | 55348 | 0.6593 7.2395

Note: The bold values refer to the in-sample performance.

Table 7 Performance inconsistency among the reported and re-evaluated values collected from the literature

No. Originally Reported Boumanchar et al. [9] This Study Dataset
MSE | RMSE | MAE | AAE ABE R AAE ABE VAT MSE | RMSE | MAE AAE ABE R’

1. 0.7529%| 8.2162 | 6.1784 | 0.5292 | 2.8955 | 2.8955 | 1.0005 | 5.4722 | 1.0834 | 0.7023
2. 10.0270|0.1630 0.7930 0.9890 | 7.8195 | 4.8710 | 0.4574 | 3.8139 | 1.9529 | 1.1011 | 6.1132 |[-0.0709| 0.6079
3. ]0.0230{0.1520 0.7290 0.9907 |121.6091|21.3792| 0.4789 | 4.5675 | 2.1372 | 1.1884 | 6.5293 | 0.8501 | 0.5304
4. 10.0210(0.1460 0.7190 0.9917 | 7.6070 | 2.1376 | 0.4271 | 5.0209 | 2.2407 | 1.2501 | 6.9498 | 1.6248 | 0.4838
5. 10.0210{0.1460 0.7600 0.9915|7.8014 | 1.3687 | 0.4187 | 5.4473 | 2.3339 | 1.3136 | 7.3118 | 2.1383 | 0.4399
6. [0.0250{0.1590 0.8250 0.9896 | 8.6486 | 5.6098 | 0.4387 [12.8125| 3.5795 | 1.6621 | 7.3206 |-2.1333|-0.3173
7. 10.0220|0.1500 0.7300 0.9910 | 7.6964 | 3.9647 | 0.4443 |36.9891| 6.0819 | 1.4357 | 6.5461 [-0.1908|-2.8030
8. 8.5700 | 1.1400| 0.7340 [12.3974{12.0221| 0.4362 | 3.9082 | 1.9769 | 1.3510 | 7.0209 |-3.5111| 0.5982
9. 1.2000 | 5.3300 |1.0000 12.6002|-9.7611| 0.4574 | 8.5571 | 2.9252 | 2.6332 |16.5784|15.8988| 0.1202
10. 1.0610 5.3100 | 1.1900 7.0133 | 2.5392 | 0.4487 | 2.5063 | 1.5831 | 1.0238 | 5.5408 | 1.7348 | 0.7423
11. 0.8400 | 5.4400 | 0.6200 7.2522 | 2.2382 | 0.4308 | 4.3959 | 2.0967 | 1.4602 | 8.1904 | 6.1484 | 0.5480
12. 0.5580 | 5.9600 | 0.5000 7.471510.5270| 0.4943 | 7.7760 | 2.7885 | 1.8419 | 9.4442 | 0.9167 | 0.2005

*Computed in this article. The literature were incorrectly com

puted by setting “Constant as zero” during data analysis in Excel.

1. HHV = 0.2949C + 0.8250H [10]

7. HHV = -5.290 + 0.493C + 5.052/H [11]

2. HHV = -3.147 + 0.468C [11]

8. HHV = 0.3198C + 0.08030 + 0.4704N - 1.4502S +

0.9364 [12]

3. HHV = -2.907C + 0.491C + 0.261H [11]

9. HHV = (338.4C + 244.2)/1000 [13]

4. HHV = -3.393 + 0.507C - 0.341H + 0.067N [11]

10. HHV = (1.59C% + 154.5C + 7464)/1000 [13]

5. HHV = -3.440 + 0.517(C + N) - 0.433(H + N) [11]

11. HHV = (303.81C + 81.620 - 490.68S + 159.92)/1000 [13]

6. HHV = 5.736 + 0.006C" [11]

12. HHV = (-150.60 + 24660)/1000 [13]

Comparisons with the earlier results
literature support the experimental results
study. Table 7 compares the performance

models from the three sources; the original

in the evaluation by Boumanchar et al. [9], and the

of the  evaluations in this study. The initially reported values

of the  are representatives of the in-sample performance.

report, The table indicates that AAEs and

RMSEs were
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different among the assessments. Therefore, the
experiments of the study clearly indicate the volatile
accuracy for out-of-sample data [9].

The experimental models listed in Tables 6
and 7 are not the proxies of the highest accurate
model for the training sets; the error averages were
thus distinct. Even though the models were precise
for their training sets, the out-of-sample accuracy
could not be guaranteed. Therefore, retraining
the model is recommended to ensure statistical

accuracy.

4. Conclusions

The experiments in this study indicate that

1) Performance inconsistencies arise in the
biomass HHV models for ultimate analysis.

2) The models cannot maintain the MSE,
RMSE, MAE, AAE, ABE, and R’ when using out-of-
sample data

3) Retraining the model using a practical
dataset is recommended before implementation.

Additionally, the present study presents
evidence of the accuracy degradation of nonlinear
biomass HHV models. Other contributions include
the procedures to inspect the accuracy consistency.

The experiments assumed the models with the
lowest MSE constructed from the random parameter
searching would have an accuracy equivalent to
those of earlier models. Furthermore, the study was
limited to the minimum MSE objective function for
the ultimate analysis. Further research to construct
a domestic dataset is essential to enhance the
accuracy of ultimate analysis models and promote
the use of biomass energy to mitigate climate

change and reduce the usage of fossil fuel.
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