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Biorefineries are becoming foundational to a
sustainable bioeconomy, converting biomass into
fuels, chemicals, and materials while curtailing
reliance on fossil feedstocks [1]. The global industrial
biorefinery market is expected to exceed USD 48
billion by 2025, with steady expansion forecast
through 2033 [2]. Yet, despite the proliferation of
innovations at the laboratory scale, only a handful of
technologies have migrated to commercial operation,
such as novel pretreatment methods, microbial
engineering, and hybrid conversion pathways [3]. This
disconnect highlights a persistent paradox: while
academic research is rich in breakthroughs, real-world
industrial deployment remains sparse, constrained by
economic, scaling, and policy uncertainties [4].

In the academic literature, the vast majority of
biorefinery research remains confined to bench-scale
experiments, for instance, novel pretreatment
methods, enzyme optimization, microbial conversion
pathways, and reactor design at milliliter-to-liter scale.
While these studies provide valuable mechanistic
insights and incremental improvements, they seldom
incorporate scale-up constraints, such as mixing, heat
transfer, solids loading, or process integration. Many
proposals end at improved sugar yields or lab-scale
fermentation, without even preliminary techno-
economic or scale-up considerations [5]. Despite
decades of innovation, only a small fraction of
promising lab-scale processes ever reaches pilot or
demonstration scale. Many ideas stall between
academic proof of concept and industrial validation.

Researchers highlight that, even in integrated
biorefinery proposals, few authors document efforts to
test at a pilot scale or engage in demonstration projects
[4]. The impact of scale-up remains largely unexamined
in recent work on agro-industrial by-product biorefineries.
As a result, promising technologies remain untested
under real-world constraints, such as feedstock
heterogeneity, continuous operation, and maintenance
demands, which further discourage industry translation [6].

Compounding the technical hurdles is a
fragmented ecosystem of funding streams and
research silos. Many grants support short-term,
narrow-scope projects (exploring a new enzyme or
solvent), thus only a few funds support full chain
integration or long-term scale-up. In the U.S., for
example, the Bioenergy Technologies Office (BETO)
has established dedicated scale-up and systems
integration portfolios. Therefore, competition for
these funds is fierce, and overall funding remains
limited. The 2023 Project Peer Review report even
flagged that scale-up projects are underrepresented
relative to basic research [7]. Internationally, national
research agencies often lack mandates or budgets to
underwrite capital-intensive pilot programs, resulting
in fragmented advancements that seldom coalesce into
coherent pilot demonstrations. Such a disjointed and
underfunded framework acts as a brake on meaningful
progression from lab to industry. Figure 1 highlights
the critical bridges and existing gaps in the scale-up
framework of biorefineries.
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Figure 1: Bridges and gaps in biorefinery scale-up from lab to industrial scale.

Despite the rich landscape of laboratory
advances, one of the greatest obstacles to scaling
biorefineries is that many studies end at yield
optimization and never progress to techno-economic
analysis (TEA) and life cycle assessment (LCA) [8].
The pretreatment stage remains expensive, requiring
aggressive chemicals, high pressure or temperature,
and large water or catalyst inputs, which typically
account for a disproportionately large share of capital
and operating expenses [9]. Additionally, enzyme and
energy demand further inflate costs. The cellulase
cocktails, co-factors, and thermal inputs can represent
10-30% or more of total operating expenditure in
biochemical conversion routes [10]. On the logistics
side, the challenge of collecting, transporting, densifying,
and storing bulky biomass from distributed sources
incurs high costs and variability, which erodes
margins before even entering a conversion plant [11].
Finally, even when a bioprocess is technically
feasible, it often struggles to compete cost-wise with
established petrochemical routes, especially when
fossil feedstocks benefit from legacy infrastructure,
economies of scale, and subsidies. Integrated reviews
show that many promising lab results never quantify
this gap, leaving commercial viability untested [12].

Pilot and demonstration scale efforts are a
critical yet often neglected bridge between lab-scale
promise and real-world impact, because only by
operating under semi-industrial conditions can one
validate stability, feedstock wvariability tolerance,
process integration, and operational resilience. By
lowering capital barriers and enabling multiple
projects to access standardized scale-up platforms,
they promote cross-sector collaboration and more

efficient utilization of limited resources. In this
collaborative matrix, universities, technology developers,
industrial users, supply chain partners, and policymakers
can co-develop and validate processes under realistic
constraints. Studies should include TEA and LCA
from the earliest stages of research, so emerging
concepts are screened for conversion yield, cost, and
environmental viability [13]. Concurrently, policy-
backed investment in pilot infrastructure is needed to
unlock scale-up, while new models of industry-
academia co-development can accelerate translation
by aligning incentives, sharing risk, and aligning
milestones. Finally, success hinges on careful attention to
feedstock logistics (ensuring reliable, cost-effective
biomass supply) and targeting marketable product
streams ideally with multiple value-adding co-
products so that biorefineries become economically
competitive in real markets, not just academic case
studies [14].
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