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Abstract 

This paper proposes a mitosis detection algorithm that utilizes gradient-mapped intensity (GMI) features 

integrated into a one-dimensional convolutional neural network (1-D CNN) for the classification of mitotic cells 

in histopathological images. The proposed framework begins by preprocessing the input images through 

intensity compensation, followed by contrast enhancement using adaptive histogram equalization. Mitosis 

candidates are subsequently identified using adaptive thresholding techniques and morphological operations. 

From each detected candidate, GMI features are extracted through gradient estimation in both the x and y 

directions, construction of gradient histograms, and mapping of gradient magnitudes with corresponding 

intensity values. These features, derived from the red, green, and blue (RGB) channels, are used to train a 1-D 

CNN classifier that categorizes the inputs into two classes: mitosis and non-mitosis. The effectiveness of the 

proposed approach is evaluated using two benchmark datasets, ICPR 2012 and ICPR 2014, with performance 

measured via precision, recall, and F1-score metrics. The proposed model achieves an F1-score of 0.846, a recall 

of 0.859, and a precision of 0.863 on the ICPR 2012 dataset, demonstrating competitive performance compared 

to existing methods. 

 

Keywords: 1-D convolution neural network (1-D CNN), F1-score, Gradient-mapped intensity (GMI), 

Histopathological image, Mitosis 

 

1 Introduction 

 

Due to the increase in the number of patients with 

breast cancer, the diagnosis of mitosis in tumor cells  

has become very essential [1]. It is a time-consuming 

and tedious task to perform a manual mitotic count. 

Hence, the automatic detection of mitotic tumor cells 

is required to complete the mitotic counting process in 

a short time without the need for high material 

resources and manpower. The mitosis process occurs 

in 4 stages, namely the prophase, followed by 

metaphase, anaphase, and telophase. There will be a 

high change in texture, morphology, color, and size of 

the cells in each stage. A few examples of mitosis and 

non-mitosis cells are illustrated in Figure 1.  

The recent algorithms for the detection of mitosis 

can be broadly classified into three groups, namely 

object detection approach, semantic segmentation 

approach, and pixel classification approach. In the 

object detection approach [2], the training network 
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requires a bounding box along with its corresponding 

labels. In the semantic segmentation approach, the 

segmentation map is determined from the semantic 

segmentation [3]. Each pixel is categorized into two 

labels, which are the mitotic pixels, and non-mitotic 

pixels, where the network is trained using the 

categorized pixels. In the pixel classification approach, 

the pixels that are close to the centroid of the mitosis 

cell are considered mitosis cells, and the pixels that are 

away from the centroid are considered non-mitosis 

cells. Based on the consideration, the network is 

trained where a fixed patch for every pixel is provided 

to the training network. However, this approach has 

high computational and storage costs [4].

 

             
(a) 

 

                 
(b) 

Figure 1: Few examples of mitosis and non-mitosis cells (a) Mitosis cell (b) non-mitosis cell [5]. 

 

Deep learning algorithms play a major role in the 

detection of mitosis. The traditional CNN-based 

approach has the challenge that it requires a pixel-wise 

label to attain better performance. To provide pixel-

wise labels, the pathologist needs to spend an 

enormous time. It is very challenging to apply the 

trained mitotic mode globally due to the staining 

procedures and variations caused due to various 

microscopic scanners. Li et al., [6] proposed a 

segmentation network based on the supervised 

instance and domain adaptive box. This approach 

minimizes the performance variations between the 

images collected from different scan equipment. Inoue 

et al., [7] proposed a fine-tuning algorithm for the 

supervised adaptation framework in two stages. The 

consistency between the adaption components was 

improved by Chen et al., [8], which uses a faster R-

CNN network [9]. The compressed sensing approach 

was combined with a convolutional neural network 

[10] to perform the cell detection process. This 

approach reduces the inter-class imbalance by 

considering the classification problem as a regression 

problem. The refining of the label was performed by 

Sahail et al., [11]. However, refining the label reduces 

the performance of the images collected from other 

scanning equipment. To minimize such performance 

variations diverse training approach was proposed by 

Tellez et al., [12]. This improves the performance of 

the algorithm when working in different staining 

protocols by using the staining augmentation 

approach. Zhang et al., [13] used inter-domain 

consistency features that use adversarial learning. This 

approach ignores the irrelevant features while training 

the model. Lei [5] used a deep CNN to identify the 

mitosis candidate. The CNN features are reencoded 

using the spatial attention network. This spatial 

attention network enables the model to consider the 

more efficient features. The mitosis is selected from 

the mitosis candidate using a subnet formed by multi-

branch classification. 

Huang et al., [14] used the color information for 

the detection of mitosis using exclusive independent 

component analysis. Content-aware post-processing 

and Gamma Gaussian mixture model are used by the 

author Khan et al., [15] which reduces the negative 

samples. However, this approach has the drawback 

that the performance changes when tested on the 

histopathological images collected from different 

instruments.  The authors Ciresan et al., [16] proposed 

a sliding window approach for the CNN classifier that 

learns the images by patches. A cascaded network was 

proposed by Chen et al., [17] that uses two different 

networks, namely the discriminant network and a 

rough search network. The rough search network 

initially detects the mitosis candidates, while the 

discriminant network selects the mitosis cells from the 

candidates. Wang et al., [18] used CNN to train the 

handcrafted features for mitosis detection. This 

approach is simple, however, the performance is 

reduced due to the usage of redundant features in 
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training the CNN. Faster- RCNN algorithms are also 

used in the detection [19] of mitosis where the 

algorithm proposed by Ren et al., [19] uses two stages, 

which are the candidate detection stage and fine-

tuning stage. The coordinate information of the 

candidate is used in the fine-tuning stage to identify 

the mitosis cells. Squeeze and excitation block was 

proposed by Hu et al., [20], which adds the features of 

the channel domain with the weighting operations. 

The contribution of the paper is as follows. This paper 

proposes a mitosis detection algorithm from the 

mitosis candidates detected from the histopathological 

images. The algorithm extracts the gradient-mapped 

intensity features from the red, green, and blue 

channels, which highly differentiate the mitosis and 

non-mitosis candidates. The GMI process extracts and 

merges histogram and intensity features from the 

mitotic image, which results in a 1-D feature 

sequence. The algorithm also uses a 1-D-CNN [21] 

classifier that trains or classifies the mitosis 

candidates. Finally, the evaluation of the algorithm 

was done using the ICPR-2012 and ICPR-2014 

datasets using the metrics called precision, F1-score, 

and recall. The algorithm designed can very well be 

extended for other mitosis detection datasets, cancer 

types and other cellular objects as well. Thereby, 

making it a worthy candidate for any classification 

problems when working with a histopathological 

image dataset.  
 

2 Materials and Methods 

 

The block diagram of the proposed mitosis detection 

algorithm is illustrated in Figure 2. The proposed 

mitosis detection algorithm includes four processes 

including pre-processing, segmentation of mitosis 

candidate, extraction of gradient mapped intensity 

(GMI) feature, and training/classification of candidate 

feature using 1-D CNN.

 

 
 

Figure 2: Block diagram representation of the proposed mitosis detection algorithm. 

 

2.1 Pre-processing 

 

Let H1(x,y,z) be the histopathological input image. 

Initially, the image H1(x,y,z) is applied for the intensity 

compensation process, which minimizes the variation 

in mitosis candidate detection for the images acquired 

from different scan instruments. The intensity 

compensation approach uses a compensation threshold 

intensity for the red, green, and blue channels. Let Tr, 
Tg and Tb represent the compensation threshold for the 

red, green, and blue channels, respectively, which can 

be estimated from the mean intensity of the red, green, 
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and blue channels of different scan images from the 

different datasets. Let the size of the input image 

H1(x,y,z) be S1 S2. The intensity-compensated image 

H2(x,y,z) can be estimated from the relation in Equation 

(1). 

 

𝐻2(𝑥, 𝑦, 𝑗) = 𝐻1(𝑥, 𝑦, 𝑗) +
1

𝑠1×𝑠2
𝐻1(𝑥, 𝑦, 𝑗) − 𝑇𝑗      (1) 

 

Where j∈r,g,b. The image H2(x,y,z) is applied to 

adaptive histogram equalization [22], which further 

improves the contrast of the image from which mitosis 

candidates are detected. Let the pre-processed image 

be H3(x,y,z). 

 

2.2  Segmentation of mitosis candidate 

 

For the detection of mitosis candidates, the algorithm 

uses adaptive thresholding [23] and morphological 

operations [24]. Initially, the RGB image H3(x,y,z) is 

converted to a grayscale image given by H3(x,y). 

Adaptive thresholding is then performed to obtain the 

image H4(x,y) that detects the possible intensities 

nearer to mitosis candidates. Further, the 

morphological operation (dilation) is performed to 

remove the smaller objects that do not belong to 

mitosis candidates. Further erosion is performed to 

obtain the boundaries of the mitosis candidates. Let 

H5(x,y) represent the image with the mitosis 

candidates. 

 

2.3 Gradient mapped intensity (GMI) feature extraction 

 

From the image H5(x,y), each mitosis candidate is 

separated to form a mitosis candidate image. The 

mitosis candidate image can be constructed as 

illustrated in Figure 3.  

 

 
      (a)                (b)              (c) 

 

 
      (d)                (e)              (f) 

 

Figure 3: Estimation of mitosis candidate image (a) 

Mitosis candidate (b) Centroid estimation (c) 

Maximum radius estimation (d) Construction of 

circular region (e) Estimation of boundaries of mitosis 

candidate image (f) Representation of mitosis 

candidate image. 

 

 The mitosis candidate image can be 

reconstructed, including the processes, which are 

centroid estimation, maximum radius estimation, 

circular region construction, and boundary formation. 

Let (x1,y1),(x2,y2),… (xN,yN) represents the boundary 

pixel coordinates of a mitosis candidate shown in 

Figure 3(a). The centroid of the mitosis candidate (xe, 

ye) can be obtained from the boundary coordinate as 

shown in Figure 3(b) using the relations Equations (2) 

and (3). 
 

(𝑥𝑒 ,  𝑦𝑒) = (
𝑥1,𝑥2,…, 𝑥𝑁

𝑁
) ,   (

𝑦1,𝑦2,…, 𝑦𝑁

𝑁
)                      (2)              

 

(𝑥𝑒, 𝑦𝑒) = (
1

𝑁
∑ 𝑥𝑖, 

1

𝑁
∑ 𝑦𝑖, 

𝑁
𝑛=1

𝑁
𝑛=1 )             (3) 

 

Using the centroid xe,ye and the boundary pixel 

coordinates (x1,y1),(x2,y2),…(xN,yN), the maximum 

radius rmax is estimated as shown in Figure 3(c) using 

the relation Equation (4). 

 

𝑟𝑚𝑎𝑥 = max(√(𝑥𝑛 − 𝑥𝑒)2 + +(𝑦𝑛 − 𝑦𝑒)2)            (4) 

 

where n = 1,2,…,N 

Using rmax as radius and xe, ye as the center, a 

circle is constructed as shown in Figure 3(d). A square 

is formed such that the constructed circle is inscribed 

in it. Thus, the region inside the square represents the 

candidate image as shown in Figures 3(e) and (f). 

 

2.3.1  Area mapping  

 

To avoid the variation caused by to size of the mitosis 

candidate, the size of the mitosis candidate region is 

made to a uniform size Ac,, which represents the 

number of pixels inside the mitosis candidate. Let Ac 

be the constant area mapping parameter. Let Ai be the 

area of the ith mitosis candidate image. Each detected 

mitosis candidate image has an area of Ai that must be 

converted to the area of Ac. If the area of the mitosis 

candidate image 𝐴𝑖 is less than the constant area 

mapping parameter (Ai < Ac), then image interpolation 

is performed such that Ai ≈ Ac as provided in Figure 
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4(b). The interpolation or resizing of the mitosis 

candidate image region is done with the scaling factor. 

Similarly, if the area of the mitosis candidate 

image 𝐴𝑖 is greater than the constant area mapping 

parameter (Ai < Ac), then image decimation is 

performed such that Ai ≈ Ac as provided in Figure 4(a). 

 

 
(a) 

 
(b) 

Figure 4: Area mapping for larger and smaller size 

mitosis candidates (a) large size mitosis candidate, (b) 

Small-size mitosis candidate. 

 

The decimation or resizing of the mitosis 

candidate image region is done using the scaling factor 

si provided in Equation (5). 

 

𝑠𝑖 =
𝐴𝑐

𝐴𝑖
                (5) 

 
2.3.2  Gradient estimation in x and y direction 

 

Let H5(x, y, z) represent a mitosis candidate image. 

From the mitosis candidate image H5(x, y, z) the 

gradient is estimated in x and y directions. Let (ri, gi, 

bi) represent the red, green, and blue components of 

the mitosis candidate image H5(x, y, z). From each 

channel ri(x,y),gi(x,y) and bi(x,y), the gradient is 

estimated in the x and y direction. Therefore, the 

gradient in the x direction of red, green, and blue 

channels is given by Gxr,i(x,y), Gxg,i(x,y), and Gxb,i(x,y), 

respectively. Similarly, the gradient in the direction of 

red, green, and blue channels is given by Gyr,i(x,y), 

Gyg,i(x,y), and Gyb,i(x,y), respectively. 

 

2.3.3  Gradient histogram estimation 

 

Here, the gradient histogram h(Ig), represents the 

number of elements with gradient values Ig. Let Δ 

represent the histogram spacing factor. For example, 

if Δ = 5, it means that each bin of the histogram 

corresponds to five gradient values other than 0 and 

left and right extrema bins. From the gradient image 

Gxr,i(x,y), Gxg,i(x,y), Gxb,i(x,y), Gyr,i(x,y), Gyg,i(x,y), 

Gyb,i(x,y), the histogram gradient is estimated which is 

given by hxr,i(IG), hxg,i(IG), hxb,i(IG), hyr,i(IG), hyg,i(IG), 

hyb,i(IG), respectively (Figure 5). Here, IG represents 

the intensity corresponding to the histogram bin.  The 

histogram spacing factor Δ = 1, where the histogram 

is estimated for each gradient value. The histogram bin 

for the left and right extrema is given by, 𝐼𝐺 ≤
𝐿𝑚 𝑎𝑛𝑑 𝐼𝐺 ≥ 𝐿𝑀, respectively. 

 

 

 

 
 

Figure 5: Representation of gradient histogram with  

(a) red channel in direction (b) red channel in  

direction (c) Green channel in  direction (d) Green 

channel in  direction (e) Blue channel in  direction (f) 

Blue channel in  direction. 

 

For Δ = 1, the intensity corresponds to the 

histogram is given by 𝐼𝐺 = {𝐼𝐺 ≤ 𝐿𝑚, … , −3, −2,

−1,0,1,2,3. . 𝐼𝐺 ≥ 𝐿𝑀}. For Δ = 5, the intensity 

corresponding to the histogram is given by 𝐼𝐺{𝐼𝐺 ≤

𝐿𝑚,.. − 15, −10, −5,0,5,10,15. . 𝐼𝐺 ≥ 𝐿𝑀}. The general 

expression for the intensity that corresponds to the 

histogram with the histogram spacing factor∆ is given. 

 𝐼𝐺 = {𝐼𝐺 ≤ 𝐿𝑚, . . , . . , −2∆≤ 𝐼𝐺 ≤ −∆ − 1, −∆≤ 𝐼𝐺 ≤
−1,0,1 ≤ 𝐼𝐺 ≤ ∆, ∆ + 1 ≤ 𝐼𝐺 ≤ 2∆, . 𝐼𝐺 ≥ 𝐿𝑀}. The 

general structure of the gradient histogram is provided 
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in Figure 6(a). Figure 6(b) and (c) show the histogram 

representation with Δ = 1 and Δ = 5, respectively. 

 

 
Figure 6: Representation of gradient histogram (a) 

General representation (b) With Δ = 1 and (c) With Δ 

= 5. 

 

The histogram of the gradient values is arranged 

in x-direction R, G, and B histogram values followed 

by y-direction R, G, and B histogram values. 

Therefore, the features obtained by the histogram of 

the gradient values are expressed as Equation (6), 

 

ℎ𝑖(𝐼𝐺) =
1

𝑆1 × 𝑆2

[ℎ𝑥𝑟,𝑖(𝐼𝐺), ℎ𝑥𝑔,𝑖(𝐼𝐺) , ℎ𝑥𝑏,𝑖(𝐼𝐺),  

ℎ𝑦𝑟,𝑖(𝐼𝐺), ℎ𝑦𝑔,𝑖(𝐼𝐺) , ℎ𝑦𝑏,𝑖(𝐼𝐺)]             (6) 

 

The histogram of the gradient values ℎ𝑖(𝐼𝐺) can 

be plotted as depicted in Figure 7(a). Let 

(𝑢𝑥𝑟,𝑖,𝑣𝑥𝑟,𝑖) represents the location of the gradient 

value 𝐼𝐺  in the gradient image 𝐺𝑥𝑟,𝑖. The intensity 

feature for the gradient of the R-channel in the x-

direction is estimated as Equation (7) 

𝑃𝑥𝑟,𝑖(𝐼𝐺) = 𝑀𝑜 (𝐻1(𝑢𝑥𝑟,𝑖,𝑣𝑥𝑟,𝑖)) 255⁄                 (7) 

 

Where 𝑀𝑜(. ) is the statistical mode function. 

Similarly, the intensity feature for the gradient of the 

G and B channels in the -direction, R, G, and B 

channels in the -direction is estimated. The intensity 

feature for the mitosis candidate is expressed as 

Equation (8). 

 

𝑝𝑖(𝐼𝐺) = [𝑝𝑥𝑟,𝑖(𝐼𝐺), 𝑝𝑥𝑔,𝑖(𝐼𝐺), 𝑝𝑥𝑏,𝑖(𝐼𝐺) , 𝑝𝑦𝑟,𝑖(𝐼𝐺), 

 𝑝𝑦𝑔,𝑖(𝐼𝐺), 𝑝𝑦𝑏,𝑖(𝐼𝐺)]                  (8) 

 

The intensity feature of a mitosis candidate can 

be plotted as shown in Figure 7(b). The histogram-

mapped intensity feature for the mitosis candidate is 

expressed as Equation (9). 

 

𝐹𝑖(𝐼𝐺) = [ℎ𝑖(𝐼𝐺),  𝑝𝑥𝑟,𝑖(𝐼𝐺)]             (9) 

 

The histogram-mapped gradient feature can be 

plotted as shown in Figure 7(c). 

 

 
(a) 

 
   (b) 

 
   (c) 

Figure 7: Representation of feature sequence (a) 

histogram of gradient features (b) intensity feature and 

(c) histogram mapped intensity feature. 

 

2.4  1-D-Convolutional neural network 

 

The result of the GMI feature extraction is one one-

dimensional feature sequence. Hence, the decision to 

use 1D-CNN going forward.  Similar to the 2-D-CNN 

algorithm [25], the 1-D-CNN algorithm uses four 

different layers, including the convolution layer, 

pooling layer, flatten layer, and fully connected layer 

(Figure 8). The convolution layer consists of different 

kernels or filters that perform the convolution 

operation between the input sequence and the filter. 

The max-pooling layer estimates the maximum value 

from the patch of the convolution output. Let L be the 

length of the feature extracted from one mitosis 

candidate. Therefore, the size of the convolution layer 

1 and the pooling layer 1 is L × 32 and L/2 × 32, 
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respectively. The size of the convolution layer 2 and 

the pooling layer 2 has the size of L/2 × 64 and L/4 × 

64, respectively. The output of the pooling layer 2 is 

then flattened, which has 16L feature values. The fully 

connected layer has three sub-layers, including the 

input layer, hidden layers, and output layers. The input 

layer has 16L inputs, and two output layers that 

represent the mitosis and non-mitosis classes. The 

architecture uses three hidden layers in the fully 

connected layer, where each layer has 16L + 1 

neurons.

 

 
 

Figure 8: Architecture of 1-D-CNN for the classification of mitosis. 

 

2.5  Algorithm 

 

Input: Histopathological input scan image 𝐻1, 

spacing factor ∆, left extrema 𝐿𝑚, right extrema 𝐿𝑀, 

Compensation thresholds of red, green, and blue 

channels 𝑇𝑟 , 𝑇𝑔,𝑎𝑛𝑑 𝑇𝑏  and respectively.  

Output: Detected mitosis 

Step 1: Apply Intensity compensation to the 

image H1(x,y,z) to obtain the intensity-compensated 

image H2(x,y,z). 

Step 2: Perform adaptive histogram equalization 

on the image H2(x,y,z) to obtain the enhanced image 

H3(x,y,z). 

Step 3: Apply adaptive thresholding to obtain the 

possible mitosis candidate. Let the segmented image 

be represented as H4(x,y,z). 

Step 4: Apply the morphological operation 

dilation to eliminate the smaller objects that are not 

mitosis candidates. Further, perform erosion to obtain 

the boundaries of the selected mitosis candidates. Let 

the image that corresponds to the segmented mitosis 

candidate be H5(x,y,z). 

Step 5: Estimate the gradients in x and y 

directions for the red green and blue channels of each 

mitosis candidate after forming a mitosis candidate 

image with constant area mapping. 

Step 6: Estimate the gradient histogram with the 

spacing factor ∆ , left extrema Lm, right extrema LM. 

Also, estimate the gradient histogram feature. 

Step 7: Estimate the intensity features using the 

gradient histogram and the image H1(x,y,z). 

Step 8: Merge the feature obtained in steps 6 and 

7 to estimate the gradient-mapped intensity features. 

Step 9: Repeat steps 5 to 8 for all mitosis 

candidate images to obtain the complete feature F̂.  
Step 10: Train the features obtained in Step 9 

with labels of the mitosis candidates using the 1-D-

CNN classifier. 

Step 11: Test the feature of the test image using 

the trained 1-D-CNN model to detect the mitosis 

candidates. 

 

3 Results and Discussion 

 

The evaluation of the mitosis detection algorithm was 

done using the ICPR 2012 [26] and ICPR 2014 [27] 

datasets with the metrics, including F1-score, recall, 

and precision. The sample images from the ICPR-

2012 and ICPR-2014 datasets are provided in Figure 

9. The images used in the ICPR 2012 dataset were 

acquired by an Apero-XT scanner that has a resolution 

of 0.2456 μm2, which has a size of 2084×2084 pixels. 

The dataset has 50 images, where 15 images are used 

as the test images and the remaining 35 images are 
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used as training images. The ICPR 2014 dataset has a 

total of 326 labeled mitosis candidates. The ICPR 

2014 dataset has 86 images, each having a size of 

4000×3000. Out of 86 images, 20 images are used as 

test images and 66 images are used as training images. 

The ICPR 2014 dataset has a total of 749 labeled 

mitosis candidates.

 

 
(a) 

 

 
(b) 

Figure 9: Sample histopathological images from ICPR-2012 and ICPR 2014 dataset (a) ICPR-2012 dataset (b) 

ICPR-2014 dataset. 

 

The evaluation metrics F1-score, recall, and 

precision are estimated using the relation shown below 

Equations (10)–(12). 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
          (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
                                   (11) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                          (12) 

 

Here, Fn, Tp and Fp represent the false negative, true 

positive, and false positive, while classifying the 

mitosis candidates, respectively. 

Figure 10 depicts the experimental results for the 

proposed mitosis candidate detection algorithm that 

includes the pre-processed image, mitosis candidate 

image, and detected mitosis. The proposed algorithm 

was evaluated with 11 histogram bins, including the 

zero-gradient intensity, left and right extrema. Thus, 

the total number of features extracted from one mitosis 

candidate is L=132. Therefore, the layer sizes of the 

convolution layer 1, pooling layer, convolution layer 2, 

and pooling layer 2 are 132 × 32, 66 × 32, 66 × 64, and 

respectively. The flattened and input layer of the fully 

connected layer has the size of 1 × 2112. We have used 

three hidden layers, each having 2113 neurons.  The 

algorithm uses the red, green, and blue channel 

thresholds for compensation Tr, Tb, and Tg, as 136, 

119, and 127, respectively. The algorithm also uses a 

constant area map size of 40 × 40. 

Figure 11 shows a few classified mitosis 

candidates. The performance of the proposed scheme 

is compared with the traditional approaches, including 

HC+CNN [28], IPAL [29], CasNN [17], IDSIA [16], 

RRF [30], DeepMitosis [2], Condinst [31], SegMitosis 

[32], CDAM [6], and Boxinst [33]. The proposed 

approach provides an F1-score of 0.846, which is 

1.4% higher than SegMitosis approach for ICPR 2012 

dataset (Table 1). The precision of the proposed 

approach is 0.9% and 2.4% higher than the SegMitosis 

and Boxinst scheme for ICPR 2012 and ICPR 2014 

dataset, respectively (Figure 12). Hence, proving that 

the proposed method has better accuracy when 

working with the datasets. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 10: Experimental results for mitosis candidate detection (a) Input image (b) Pre-processed image (c) 

Mitosis candidates, (d) Detected mitosis. 

 

 
(a) 

 

 
(b) 

Figure 11: Few of the mitosis candidate results for mitosis and non-mitosis cells (a) Mitosis cells (b) non-mitosis cells. 
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Table 1: Performance comparison of the proposed approach with the traditional approach for ICPR 2012 and 

ICPR 2014 dataset. 

Method 
ICPR 2012 ICPR 2014 

F1-score Recall Precision F1-score Recall Precision 

HC+CNN 0.735 0.65 0.84 0.521 0.462 0.472 

IPAL 0.718 0.74 0.698 0.538 0.473 0.487 
CasNN 0.788 0.772 0.804 0.557 0.496 0.463 

IDSIA 0.782 0.7 0.88 0.569 0.567 0.473 

RRF 0.823 0.811 0.835 0.582 0.583 0.485 
Deep Mitosis 0.802 0.762 0.846 0.572 0.621 0.488 

Condinst 0.830 0.832 0.832 0.612 0.653 0.521 

SegMitosis 0.832 0.812 0.854 0.607 0.785 0.495 
CDAM 0.825 0.842 0.81 0.631 0.691 0.581 

Boxinst 0.812 0.792 0.833 0.629 0.689 0.593 

Proposed 0.846 0.859 0.863 0.659 0.763 0.617 

 

 
 

Figure 12: Graphical comparison of the performance of the proposed approach with traditional schemes. 

 

Table 2: k-fold validation results for ICPR 2012 and ICPR 2014 datasets. 

 

The validation of the algorithm was performed 

using the k-fold cross-validation with k = 1, 2, 3, 4, 

and 5. It helps assess the results of the model and 

generalize to an independent dataset. Also, ensuring 

that the model’s evaluation is less biased and better 

represents how the model would perform on an unseen 

dataset. The results obtained using the k-fold cross-

validation for different values of k are illustrated in 

Table 2. The average F1-score, recall, and precision 

for the proposed approach for the ICPR 2012 dataset 

are estimated as 0.846, 0.859, and 0.863, respectively. 

For the ICPR 2014 dataset, the F1-score, recall, and 

precision were estimated as 0.659, 0.763, and 0.617, 

respectively. 

With the left and right extrema Lm = -22 and Lm 

= 22, the number of histogram bins and feature-length 

can be estimated as illustrated in Table 3. As the 

spacing factor increases, the feature length reduces. 

 

Table 3: Estimation of feature length for different 

spacing factor. 
Spacing Factor Δ #Histogram Bins Feature Length 

1 45 540 

3 17 204 
5 11 132 

7 9 108 

9 7 84 

 

Fold 
ICPR 2012 ICPR 2014 

F1-score Recall Precision F1-score Recall Precision 

1 0.832 0.814 0.871 0.662 0.759 0.61 

2 0.862 0.863 0.876 0.631 0.771 0.629 

3 0.857 0.849 0.833 0.653 0.757 0.631 
4 0.821 0.872 0.867 0.662 0.751 0.609 

5 0.858 0.897 0.868 0.687 0.777 0.595 

Avg 0.846 0.859 0.863 0.659 0.763 0.617 
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Figure 13: Performance variation for different values 

of Δ. 

 

Figure 13 shows the graphical representation of 

the variation of performance metrics F1-score, recall, 

and precision for different values of the spacing factor 

Δ. As the spacing factor Δ is increased from 1, the 

performance gradually increases. The maximum 

performance can be obtained for the spacing factor Δ 

= 5. As the spacing factor is further increased, the 

performance gradually reduces. 

Table 4 shows the training and testing time 

comparison for different values of Δ. The training and 

testing time of ICPR-2014 is higher than the ICPR-

2012 dataset. For Δ = 5, the training time of the ICPR-

2012 and ICPR-2014 datasets is 1859.16s and 

2318.97s, respectively. Similarly, for Δ = 5, the testing 

time of the ICPR-2012 and ICPR-2014 datasets is 

0.861s and 0.976, respectively. The graphical 

comparison of training and testing time complexity is 

provided in Figure 14. As the value of ∆  increases, the 

training and testing time is reduced. This is due to the 

reduction in the number of features extracted from 

each mitosis candidate. The reduction in features 

reduces the training and classification time of the 

CNN network. 

 

 
(a) 

  
(b) 

Figure 14: Comparison of training and testing time for 

different values of Δ (a) Training time (b) testing time.

 

Table 4: Time complexity comparison for different values of spacing factor. 

 

4 Conclusions 

 

The paper proposed a mitosis detection algorithm on 

histopathological images that extracts gradient-

mapped intensity features. The algorithm uses a 1-D 

CNN for the classification of one-dimensional vector 

GMI features extracted from the mitosis candidates. 

The scheme uses four processes, including pre-

processing, mitosis candidate detection, GMI feature 

extraction from the candidates, and 1-D CNN 

classification. After pre-processing the 

histopathological images, the mitosis candidates are 

detected using adaptive thresholding and 

morphological operations, which are dilation and 

erosion. From the mitosis candidate, GMI features are 

extracted that include the stages like gradient 

estimation in x, and y direction, formation of gradient 

histogram, and mapping of gradient and intensity 

 1 2 3 4 5 6 7 8 9 
ICPR

-2012 

Train 6943.41 5179.33 3543.81 2536.09 1859.16 1581.13 1094.592 723.344 542.504 
Test 8689.32 6469.17 4417.35 3172.61 2318.97 1989.46 1361.36 901.21 676.17 

ICPR

-2014 

Train 1.763 1.426 1.057 0.921 0.861 0.842 0.804 0.813 0.826 
Test 1.981 1.597 1.213 1.032 0.976 0.943 0.912 0.886 0.887 
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components. Finally, the extracted GMI features from 

each mitosis candidate are trained and classified using 

a 1-D CNN classifier. The evaluation of the 1-D CNN 

classifier with GMI features is evaluated with 

performance metrics such as F1-score, recall, and 

precision. The proposed scheme provides the F1-

score, recall, and precision of 0.846, 0.859, and 0.863, 

respectively, for the ICPR 2012 dataset. From the 

evaluation results, the proposed approach outperforms 

other similar approaches when evaluated in the ICPR 

2012 and ICPR 2014 datasets. 

As an extension of the work, the algorithm can 

be extended to other forms of cancer histopathological 

image analysis. The algorithm helps to build similar 

models that can classify the mitotic and non-mitotic 

cells, where they can be from images from different 

microscopes, different datasets, etc. This detection 

algorithm can be further improved by incorporating 

domain adoption and stain normalization techniques. 

Thereby improving the model’s robustness and 

generalizability across histopathological images from 

different equipment and labs. 
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