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Abstract
With the advent of quantum computing, almost all classical computing concepts must be translated into quantum  
equivalents. Control theory, in particular, requires a large numbers of calculations. This paper designs and  
presents a quantum sliding mode controller. The controller uses two qubit states, one for detecting tracking 
errors and the other for determining the signs of the errors. The control signal to be applied to the system is 
stored in the third qubit state. This new controller is implemented on a DC motor to control the angular velocity 
using electrical current as an input signal. In terms of tracking error energy performance, the results show that 
the quantum sliding mode controller is just as efficient as the classical sliding mode controller. However, the 
quantum controller outperforms its predecessor by using 76% to 79% less control energy, allowing for smaller 
actuators. This represents a significant advancement in control theory in the era of quantum computers. Indeed, 
actuator control energy is the main drawback of the classical sliding mode control and reducing this energy is 
one of the main challenges for the control community.

Keywords: Actuator control effort, Hadamard and Toffoli gates, Quantum computing, Quantum robust controller,  
Qubit states, Sliding mode
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1 Introduction

Quantum computing is a new paradigm that has  
captured the scientific community’s attention in recent 
decades. Many countries have invested significantly 
in quantum computing strategies due to the enormous 
potential of exponentially accelerating computation, as 
well as the promising information security applications.  
Especially in engineering, there has been extensive 
research into using quantum computing tools to solve 
problems and developing new quantum computing 
packages. Specifically in automatic control, some  
efforts have been made to adapt the control theory 

to the new quantum reality. State domain equations 
have been adapted to quantum computing using qubit 
states, and a solution-based HHL algorithm, a quantum  
algorithm named after its three creators (Harrow, 
Hassidim, and Lloyd), that solves a system of linear 
equations, was presented and compared to the exact 
classical solution in [1]. In the quantum state domain, 
a backstepping controller-based linearising decoupling  
controller has also been investigated, and a new  
quantum controller has been introduced [2].
 The sliding mode controller, on the other hand, is 
a well-known and widely used robust control strategy.  
It is based on the choice of a sliding manifold 
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on which control objectives are met [3]–[6]. The  
controller draws the state vector to the sliding manifold 
and keeps it there indefinitely [7]–[10]. Few studies 
have addressed the sliding mode control technique 
in the context of quantum computing. Several works 
have been reported with a focus on using the classical 
sliding mode controller to control quantum systems 
[11]–[15]. Other works have used sliding mode control 
to achieve quantum state control [16]–[18]. Others 
have attempted to improve the classical sliding mode 
controller using existing quantum computing tools, for 
example, by employing an adaptive quantum neural 
network to improve the speed of the sliding mode 
controller for the position of an induction motor [19]. 
A quantum genetic algorithm was used to improve the 
chattering and robustness to the noise of a sliding mode 
controller [20]. A quantum particle swarm optimisation  
in conjunction with a sliding mode controller has 
also been considered for vibration suppression in a  
multilayer composite material plate system [21]. 
Furthermore, researchers have proposed using sliding 
mode in conjunction with quantum logic to control 
a helicopter [22]. The authors state that they used 
quantum logic to improve control accuracy. However, 
the presented methodology lacks details on how to 
use quantum computing to achieve the stated goals. 
Furthermore, no sliding mode control strategies based 
on quantum states aimed at time-varying tracking 
problems have been identified in the preceding works.
 Other works in the literature have attempted to 
define a quantum sliding mode control by choosing the 
sliding manifold as a qubit state, such as [23], whose 
authors defined a sliding surface as a formula that 
takes into account the measurement of the difference 
between two qubit states. Without providing any proof, 
the authors assumed that the control objectives were 
met on their sliding surfaces. Furthermore, the authors 
assumed that the system’s initial configuration is on 
the sliding surface, which is not always the case in 
practice. None of the works found in the literature takes 
into account time-varying time for tracking purposes, 
nor did they present concrete implementations for real 
engineering systems, nor did they present quantum 
circuits for validation.
 To the best of the authors’ knowledge, no published  
works have presented the quantum sliding mode 
control strategy for tracking problems, along with 
quantum circuit implementation and validation on a 

real dynamical system. In fact, with the introduction  
of quantum computers, nearly everything in the  
traditional computing world must be adapted to the 
new quantum computing reality. From this perspective,  
this paper proposes a quantum sliding mode control 
strategy for the first time, taking into account two 
control qubit states representing the tracking error 
and its sign, as well as a target qubit state describing 
the control signal to be applied to the system. The 
simulation results on a direct current (DC) motor speed 
control show that the new controller outperforms its 
predecessor by using 76% to 79% less control effort, 
allowing for smaller actuators. This opens the door for 
the design of a robust sliding mode controller using 
reduced energy actuators. 

2 Qubits and Quantum Operators

The qubit is the fundamental unit of information in 
quantum computing, with infinitely many possible 
states that are combinations of two eigenstates 0  
(denoted as |0〉) and 1 (denoted as |1〉) [24]–[27]. A 
qubit state |q〉 can be written as Equation (1)

|q〉 = α|0〉 + β|1〉 (1)

where α and β are complex numbers that can be seen 
as the projections of |q〉 onto the two basis states |0〉 
and |1〉, respectively, such that  = 1.
 Quantum operators can change the states of qubits.  
The Identity, X, Y, and Z gates are the fundamental  
quantum operators that each manipulate only one 
qubit state. Their matrix representations are as shown 
in Equation (2):

 (2.1)

 (2.2)

 (2.3)

 (2.4)

 There are also other operators, such as the  
Hadamard gate H and the three basic rotation 
gates, which are defined in Equations (3) and (4),  
respectively:
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 (3)

 (4.1)

 (4.2)

 (4.3)

 Quantum circuits can be used to implement 
quantum operators. The quantum circuits are typically 
represented by horizontal lines for the qubit states and 
boxes for the operators, as shown in Figure 1 for the 
one-qubit operators presented above.
 There are also operators in quantum computing 
that act on two or more qubits. In the following, two 
particular gates are presented, namely the controlled 
NOT (CNOT) gate and the Toffoli or controlled CNOT 
(CCNOT) gate [26].
 The CNOT gate makes use of two qubits. It 
modifies the target qubit |q0〉 if and only if the control 
qubit |q1〉 is in the state |1〉. The operation of this gate 
is summarised in Table 1.

Table 1: The CNOT gate truth table
Before Operation After Operation

|q0〉 |q1〉 |q0〉 |q1〉
|0〉 |0〉 |0〉 |0〉
|1〉 |0〉 |1〉 |0〉
|0〉 |1〉 |1〉 |1〉
|1〉 |1〉 |0〉 |1〉

 The Toffoli gate requires two control qubits |q1〉 
and |q2〉. Only if both control qubits are in the state |1〉 
is the target qubit change. The operation of this gate 
is summarised in Table 2, and Figure 2 depicts the 
quantum circuits used to implement the CNOT and 
CCNOT operators.

Table 2: The CCNOT gate truth table
Before Operation After Operation

|q0〉 |q1〉 |q2〉 |q0〉 |q1〉 |q2〉
|0〉 |0〉 |0〉 |0〉 |0〉 |0〉
|1〉 |0〉 |0〉 |1〉 |0〉 |0〉
|0〉 |1〉 |0〉 |0〉 |1〉 |0〉
|1〉 |1〉 |0〉 |1〉 |1〉 |0〉
|0〉 |0〉 |1〉 |0〉 |0〉 |1〉
|1〉 |0〉 |1〉 |1〉 |0〉 |1〉
|0〉 |1〉 |1〉 |1〉 |1〉 |1〉
|1〉 |1〉 |1〉 |0〉 |1〉 |1〉

 The required linear algebraic concepts are the 
inner and outer products. The inner product is used to 
calculate the overlap between two quantum states. The 
inner product of two qubits |q1〉 = α1 |0〉 + β1 |1〉 and  
|q2〉 = α2 |0〉 + β2 |1〉 is denoted as 〈q1|q2〉 and is defined 
as in Equation (5) [25]:

 (5)

where  denotes the complex conjugate of c.
 A matrix is produced by the outer product of two 
states. The outer product of the two states |q1〉 = α1 |0〉 
+ β1 |1〉 and |q2〉 = α2 |0〉 + β2 |1〉 is denoted by |q1〉〈q2| 
and is defined as in Equation (6):

 (6)

 The goal of measurement is to convert quantum  

(a) The X gate        (b) The Y gate        (c) The Z gate

(d) The Hadamard gate

(e) The Rx gate       (f) The Ry gate       (g) The Rz gate
Figure 1: The quantum circuit representations of the 
basic one-qubit operators.

     (a) The CNOT gate         (b) The CCNOT gate
Figure 2: The CNOT and CCNOT quantum circuits 
using IBM Quantum Composer [28].
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information (stored in the quantum system) into  
classical information. Measuring a qubit is analogous 
to reading a classical bit to determine whether its state 
is 0 or 1. The fact that measurement outcomes are 
probabilistic is a fundamental principle of quantum 
mechanics.
 The inner product notation is used for  
measurement. For the case of a single-qubit state, 
the probability that the qubit |q〉 is at state |0〉 after 
the measurement is 〈0|q〉|2, and the probability of it 
being at state |1〉 is 〈1|q〉|2. As a result, measurement  
probabilities can be represented as the absolute values 
of overlaps squared.
 The measurement concept can be generalised 
to multiple-qubit cases or systems of qubits. After  
measuring n qubit states |ϕ〉, the probability of  
obtaining the bit string |x1 ...xn is then |〈x1 ...xn |ϕ〉|2 [26]. 
For example, in a three-qubit state |ϕ〉=|q0 q1 q2〉, if the 
goal is to determine whether the qubit state |q0〉 is |0〉, 
the probability is calculated as in Equation (7):

 (7)

3 State Domain Equations and Sliding Mode 
Control

State domain equations are a powerful tool for 
modelling dynamical systems in the field of control  
engineering. They are used extensively to help formulate  
specific problems by describing the relationships  
between unknown physical signals and variables. 
Linear systems are widely used in automation and 
control to describe the dynamics of a variable given 
an input signal. The system’s desired behavior is then 
controlled using state feedback or linear quadratic 
controllers, for example.
 In the state domain, a set of n first-order equations 
is used to represent the system, where n is the overall 
system order. The equations for a nonlinear system are 
as follows Equation (8):

 (8)

where x ∈ Rn is the state domain vector,  is the first-
order time derivative of x, y ∈ Rp is the output vector, 
u ∈ Rm is the control vector, and f(x) ∈ Rn, g(x) ∈ Rn×m, 
and h(x) ∈ Rp are vector distributions.

 For a linear system, this becomes [Equation (9)]

 (9)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are the state, 
control, and output matrices. In particular, for a first-
order system, this can be written as follows:

 (10)

where a, b, and c are real numbers.
 The state vector contains the system variables,  
including the system output signals, whereas the  
control vector contains the system input variables that 
must be adjusted to achieve a specific behavior for the 
system output.
 Assuming that the system is controllable, the 
control problem is to compute the control variable u 
to obtain a specific behavior for the state vector, using 
a variety of strategies that are primarily determined 
by the structure of the state equations on the one 
hand and the control objectives on the other. For most  
applications, the output of the system is the state  
variable itself. Otherwise, it is always possible to adjust 
the reference signal accordingly.
 For tracking purposes, the interest is focused on 
the tracking error e = x – xr rather than on the state 
vector itself. The reference for the state variable x is 
xr. As a result, system Equation (10) can be written as 
follows:

 (11)

 A linearising decoupling controller is typically  
used for nonlinear systems (as well as linear  
systems), resulting in n first-order subsystems that can 
be controlled independently. As a result, the following 
discussion will solely consider first-order systems. 
When applied to system Equation (11), the linearising 
decoupling controller Equation (12) produces system 
Equation (13).

 (12)
 (13)

where v is the new virtual control signal.
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 The control problem for systems Equation (13) 
is then to compute the new virtual control variable  
v to obtain a specific behavior for the tracking  
error, specifically to nullify it, using several control  
strategies. One of the robust control strategies that can 
be used in this case is the sliding mode control.
 The sliding mode is a well-known and widely 
used robust controller. It relies on the definition of a 
sliding surface S(e) at which the control objectives are 
achieved. This means that when S = 0, the tracking error 
is asymptotically stable at zero, and therefore the state 
variable has reached its reference. The sliding mode 
control is achieved by following two fundamental  
conditions, which are:

1) Attractiveness,  ≤ 0, which can be interpreted  
as the need for the system to converge towards its 
control objective. This is achieved by imposing  = 
–K sign(S), where K is a positive constant. This leads 
to finite-time convergence of S to zero.

2) Invariance,  = 0 ⇒ S = 0, that is, once the 
control objective is met, there is no need to move the 
system away from it [Equation (14)].

 (14)

 Highlighting the relationship with the state 
domain Equation (10). Both the attractiveness and  
invariance conditions are met by the expression  
Equation (12) for the control variable v. In fact, it will 
produce  ̇= –K sign(S), where K is a positive constant. 
If the sliding surface is chosen to be the tracking error 
S = e, then  = 1, further simplifying the controller’s 
computation to Equation (15).

 (15)

4 Methods 

The definition of each qubit state used as part of the 
solution must be established to implement the quantum 
sliding mode controller. If there is a nonzero tracking 
error, the sliding mode controller will apply a negative 
control value -K if the error is positive and a positive 
control value  K if the error is negative. However, if 
there is no error, then the control signal is zero as well. 
As a result, the action is controlled by two parameters: 

1) the presence of an error and 2) the sign of the error. 
The two parameters are expressed as two qubit states: 
|q1〉 for the presence of the error and |q2〉 for its sign. 
Tables 3 and 4 show how these two qubits work and 
what each of their states means.

Table 3: The logic of operation of the qubit state |q1〉
State Meaning

|0〉 The error is zero
|1〉 The error is nonzero

Table 4: The logic of operation of the qubit state |q2〉
State Meaning

|0〉 The error is negative
|1〉 The error is positive

 The sliding mode controller implementation will 
use these two qubits, along with a third qubit state |v〉 
(or |q0〉), to decide the control that will be applied to 
the system. Table 5 summarises the logic that describes 
this operation.

Table 5: The truth table of the quantum sliding mode 
control

Initial states Final states
|v〉 |q1〉 |q2〉 |v〉 |q1〉 |q2〉
|v〉 |0〉 |q2〉 |0〉 |0〉 |q2〉
|v〉 |1〉 |0〉 −|1〉 |1〉 |0〉
|v〉 |1〉 |1〉 |1〉 |1〉 |1〉

 A quantum circuit involving Hadamard and  
CCNOT gates is proposed to implement the operation 
in Table 5. The Hadamard gate is used for two reasons: 
1) to introduce a balanced distribution of coefficients, 
and 2) to introduce a negative sign, which is required 
for the control strategy. The proposed algorithm, with 
the corresponding quantum circuit shown in Figure 3, 
is therefore [Equation (16)].

|φ〉 = CCNOT(u,q1,Hq2) (16)

where |φ〉 is the system of qubits |v,q1,q2〉.
 The control signal is then obtained by applying 
the inner product to the bit string |101〉, the same way 
as the measurement is performed except that the norm 
is not computed to avoid the loss of the signal sign of 
the control variable, which is essential for the control 
strategy.
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5 Results and Discussion

The proposed solution was implemented using the 
IBM Quantum Composer online simulator and Matlab 
(R2021a) for real-time reference tracking simulation.
 To validate the open-loop controller operation, 
the quantum circuit in Figure 3 has been implemented 
and tested in three different configurations: 1) null 
tracking error (taking into account both possible states 
|0〉 and |1〉 for the qubit state |q1〉), 2) nonzero positive 
tracking error, and 3) nonzero negative tracking error. 
Figure 4 depicts the execution of the three tests as well 
as their results.
 Figure 4 shows that the proposed circuit performs 
the sliding mode control. An appropriate amplification  
is then required to compensate for the value   
introduced by the Hadamard gate and to tune the 
desired dynamics with the gain K. To validate the 
closed-loop operation, the proposed solution was  
implemented using Matlab code to create a simulator  
for the controlled system’s state equations. The 
functional diagram of the control system is shown in 
Figure 5.
 For the simulation, the system Equation (10) 
has been implemented with the parameters taking 
the values a = –0.1 and b = 0.1. This is a typical state  
domain model for a DC motor considering the current I  

as the control signal and the angular velocity ω as an 
output signal, which is also the state variable of the 
system. In fact, the dynamical equation of a DC motor 
is represented by Equation (17).

 (17)

 With the parameters of the DC motor summarised 
in Table 6, this can be rewritten in the form of the state 
Equation (10) by dividing the whole equation by J, 
which leads to the selected values for the parameters 
a and b.

Figure 3: The quantum circuit of the quantum sliding 
mode controller (image generated using IBM Quantum 
Composer [28]).

Figure 4: Validation of the operation of the quantum 
sliding controller using the online quantum simulator 
IBM Quantum Composer [28].

 

 

 

 
 
 

  

 

(a) Null tracking error 
(|q1〉 = |0〉 and |q2〉 = |0〉)

(c) Nonzero positive 
tracking error (|q1〉 = |1〉 
and |q2〉 = |0〉)

(b) Null tracking error 
(|q1〉 = |0〉 and |q2〉 = |1〉) 

(d) Nonzero negative 
tracking error (|q1〉 = |1〉 
and |q2〉 = |1〉) 

Figure 5: Diagram of the quantum sliding mode control.
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Table 6: The parameters of the DC motor
Parameter Description Value (Unit)

J Inertia constant 1 kg .m2

Ka Current constant 0.1 N .m/A
Bm Viscous friction constant 0.1 N .m .s

 Figures 6 and 7 illustrate the simulation results 
for the quantum and classical sliding mode controllers, 
respectively. The insets show enlarged regions around 
500 ms to better compare the signal waves for both 
control strategies.
 From the above results, it appears that both classical  
and quantum sliding mode strategies achieved good 
dynamical reference tracking objectives. However, it 
can be seen that the quantum sliding mode controller 
presented a less energetic control signal compared to 
its counterpart, which used 76.3% more energy, with 
∑v2 = 2522 for the former and ∑v2 = 4522 for the latter. 
Both strategies showed the same energy of the error 
with ∑e2 =0.1385 for both methods.

 A constant disturbance of 1% on the reference 
has been introduced in both models to evaluate the 
robustness of the two controllers in the presence of 
disturbances. For a reference speed of 1500 rpm, this 
would represent a 15 rpm error on the speed of the  
motor. Figures 8 and 9 illustrate the results for this case.
 The above simulation results highlight that both 
the classical and quantum sliding mode controllers 
achieved robustness in the presence of a constant 
disturbance. However, the classical sliding mode 
controller consumed more energy with ∑v2 = 4628.4, 
76.11% more than its counterpart, which recorded  
∑v2 = 2628.1, as illustrated in Figure 10. The same 
trend was observed for the energy of the error for 
both sliding mode controllers, which were both about  
∑e2 = 0.25, as depicted in Figure 11.
 It can be said that both sliding mode controllers 
have equivalent performances with regard to the tracking  
error and the energy of error. However, the quantum 
controller outperformed its classic counterpart in 

Figure 6: Simulation results for the quantum sliding 
mode control.

Figure 7: Simulation results for the classical sliding 
mode control.

Figure 8: Simulation results for the quantum sliding 
mode control in the presence of a disturbance.

Figure 9: Simulation results for the classic sliding 
mode control in the presence of a disturbance.
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terms of control energy with or without the presence 
of disturbances.

5 Further Analysis

To compare the performance of the proposed controller 
with the works in the literature, a constant reference 
is considered in the following, and a comparative  
analysis is provided with regard to the steady error and 
the settling time, both for the classical and the proposed 
quantum controller.
 Figures 12 and 13 depict the speed results for the 
classical and quantum control strategies, respectively.
 The above simulation results highlight that both 
controllers achieved good stabilisation performance 

with a constant reference in the presence of a constant 
disturbance. However, the classical sliding mode  
controller consumed more energy with ∑v2 = 4000, 
which is 100% more than its counterpart, which  
recorded ∑v2 = 2000.
 With respect to steady-state error, both the classical  
and quantum sliding mode controllers offer similar 
properties. However, in terms of control energy, the 
quantum controller surpassed its classical equivalent.
 Table 7 summarises a comparative analysis of 
the results of the sliding mode controllers for DC  
motors that have been found in the literature along 
with the classical sliding mode developed in this paper 
and the proposed quantum version. The values have 

Figure 11: Evolution of tracking error energy in % 
over time.

Figure 10: Evolution of control signal energy in % 
over time.

Figure 12: Simulation results for the classical sliding 
mode control.

Figure 13: Simulation results for the proposed quantum  
sliding mode control.
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been normalised to allow a better comparison as the  
dynamics of the DC motors are different.

Table 7: A comparative analysis of performance with 
works in the literature

Reference Settling 
Time (s)

Steady-state 
Error

Maheswararao et al. [3] 0.067 −0.02

Dursun et al. [5] 0.023 0

Ramprasad et al. [7] 0.643 0

Bharathi et al. [8] 0.031 0

Our classical sliding mode controller 0.035 0.005

The proposed quantum sliding mode 
controller

0.05 0.005

 Table 7 shows that the settling times for both the 
classical and quantum sliding mode controllers are 
within the range of data available in the literature, with 
the classical controller having a slightly better value. 
The steady-state error, on the other hand, is close to 
zero for both controllers.
 Another relevant case study was the examination 
of the behavior of controlled motors in the presence of 
a dynamic disturbance. A 1% amplitude sine wave with 
a frequency of 10/2π Hz was introduced. Figures 14  
and 15 show the outcome of this case study.
 The simulation findings show that both controllers  
performed well in terms of stabilisation with a constant 
reference in the presence of a dynamic disturbance. 
The original sliding mode controller, on the other hand, 

consumed 77.6% more energy, with ∑v2 = 2252, than 
its counterpart, for which ∑v2 = 4000.
 In terms of steady-state error, both the classical 
and quantum sliding mode controllers offer comparable  
characteristics. However, in terms of control energy, the 
quantum controller surpassed its classical equivalent.

4 Conclusions 

This paper presented the formalism of a quantum  
sliding mode control using two qubit states as an error 
detector and error sign indicator to provide a target 
qubit state used as a control variable. Unlike the works 
found in the literature, we have presented a detailed 
operating principle and provided an implementation 
using a quantum circuit with an application to a real 
system, namely the DC motor speed control. The  
results show that the proposed controller outperforms 
the standard sliding mode controller while using 
significantly less control energy to achieve the same  
tracking error performance. A comparative examination  
of the related works available in the literature was also 
undertaken for stabilisation problems. This revealed 
that our controllers show typical settling times and 
acceptable steady-state errors. The findings of this 
work should contribute significantly to the reduction 
of actuator control effort, by showing that smaller  
actuators can be employed using the quantum sliding 
modes controller, providing the same error performance  
as larger actuators under the classical sliding modes 
controller. This may be useful in a variety of engineering  

Figure 14: Simulation results for the classical sliding 
mode control with dynamic disturbance.

Figure 15: Simulation results for the proposed quantum  
sliding mode control with dynamic disturbance.
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applications, such as electric vehicles.
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