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Abstract
The extended exponentially weighted moving average (EEWMA) control chart is an instrument for detection. It 
can quickly identify small shifts in the process. The benchmark for the control chart's performance is the average 
run length (ARL). In this paper, we present the efficiency of the EEWMA control chart to detect tiny shifts when 
the observations are autocorrelated with exponential residuals through the explicit formulas of the ARL. The 
accuracy of the solution was verified with the numerical integral equation (NIE) method. After that, the ARL 
effectiveness of the ARL on the EEWMA control chart was expanded to compare with the traditional EWMA 
control chart. Finally, using two real datasets that indicate the percentages of internet users using Windows 7 
and iOS, the applicability of the offered method is shown. Our findings support the notion that the EEWMA 
control chart performs better when using autocorrelated data to track tiny changes.

Keywords: Average run length, Autoregressive process, EEWMA control chart, EWMA control chart, Explicit 
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1 Introduction

One of the instruments for statistical process control 
(SPC) is control charts. It has numerous applications 
and is frequently used in the manufacturing sector to 
monitor, regulate and improve processes [1], [2]. The 
Shewhart chart is a common name for the standard  
control chart [3],  which is more efficient at detecting 
large shifts in the monitored mean process. Standard  
process monitoring techniques, such as the exponentially  
weighted moving average (EWMA) chart, and the 
cumulative sum (CUSUM) chart, have undergone 
several changes and expansions. The EWMA control  
chart [4] and the CUSUM control chart [5] are  
developed to detect small shifts in the process. Next, 
the modified EWMA control chart was suggested by 
Patel and Divecha [6] and developed by Khan et al. [7]. 
For the autocorrelation observations, it performs well 
at quickly detecting slight size shifts. Later, Naveed  
et al. [8] presented the extended exponentially 

weighted moving average (EEWMA) control chart. 
It can detect slight shifts in the process more quickly. 
 One of the comparative performance methods for 
control charts, the average run length (ARL), can be 
classified into two categories: The expected number 
of observations of an in-control process, or ARL0, that 
should be made before an out-of-control observation 
is discovered. ARL0 should be large. Meanwhile, 
ARL1 refers to the expected number of observations 
gathered from out-of-control and the smallest size 
is ideal. Many previous studies have focused on  
approximating the ARL to evaluate an efficient control 
chart using many methods. For example, Mastrangelo 
and Montgomery [9] used the classic EWMA chart 
with the Monte Carlo simulation approach to display 
the ARL for serially correlated observations. Chananet  
et al. [10] used a Markov chain method to generate the 
CUSUM and EWMA charts under the zero-inflated 
negative binomial model. Sukparungsee [11] used the 
Martingale technique to approximate the ARL. Karoon 
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et al. [12] used the NIE technique to approximate the 
ARL on the EEWMA control chart. It was compared 
to the performance of the other methods.
 In addition, many researchers have used explicit 
formulas to evaluate the ARL values of the control 
charts. Suriyakat et al. [13] solved the explicit formulas  
of the ARL on the exponential AR(1) with the trend 
process in the EWMA control chart. Petcharat et al. 
[14] proposed the explicit formulas for the ARL on the 
EWMA control chart under the observations of the 
MA(q) model. When using seasonal AR(p) models 
for the data, Busababodin [15] provided an explicit  
technique for calculating the ARL on the CUSUM 
control chart. Paichit [16] presented an analytical 
solution for the ARL on the CUSUM control chart for  
first-order data with explanatory variables in the 
ARX(1) model. Phanyaem [17] developed the ARL 
on CUSUM chart analytical formula for the seasonal 
ARMA(1,1) model. Sukparungsee and Areepong [18] 
developed the explicit formulas for the ARL on the 
EWMA chart based on the AR(p) process. Afterward, 
Areepong [19] proposed the explicit formulas on the 
MA chart under, which the observations are binomially 
distributed. The Modified-mxEWMA chart developed 
by Anwar et al. [20] shows how the wood industry has 
used the method and can identify small-to-medium 
shifts in the monitoring process. Sunthornwat and 
Areepong [21] derive the explicit formulas for the ARL 
of the CUSUM chart under seasonal and non-seasonal 
moving average models with the observations of the 
exogenous variables. Saghir et al. [22] suggested a 
modified EWMA chart, and the ARL evaluated its  
effectiveness. Recently, Phanthuna et al. [23] presented 
the explicit formulas for calculating the ARL of the 
two-sided modified EWMA control chart for the first-
order autoregressive process. Moreover, the explicit 
formula for the ARL is solved by the modified EWMA 
control chart for the stationary AR(1) with trend  
observation, which was developed by Phanthuna [24] in 
the same year. Moreover, Karoon et al. [25] presented  
the ARL that is designed by explicit formulas when 
the observations are the AR(p) process with white 
noise residuals.
 However, no prior research has been done on the 
precise formulations of the ARL for the quadratic trend 
AR(p) model on the extended EWMA chart. In addition,  
the goal of this research is to derive the explicit formulas  
for the ARL on the extended EWMA chart based on 

quadratic trend autoregressive models—specifically, 
quadratic trend AR(1) and quadratic trend AR(2) models  
with exponential white noise. These were expanded 
to compare with various  and the EWMA control 
chart. Furthermore, for both simulated and real-world 
datasets, the explicit formula efficacy for computing 
the ARL on the extended EWMA control chart was 
compared to the standard EWMA control chart with 
both simulated data and real-world dataset.

2 Materials and Methods

2.1  Exponentially Weighted Moving Average control 
chart (EWMA)

The EWMA chart was proposed by Robert [4]. It 
is frequently used to find small adjustments in the 
monitoring process. The EWMA statistic may be  
expressed using the following in Equation (1):

 (1)

where Xt is an observation, which is a sequence of 
quadratic trend model, λ is a parameter of exponential 
smoothing with λ ∈ (0,1], Z0 is the initial value of the 
EWMA statistic, Z0 = u. 
 The upper and lower control limits (UCL and 
LCL) shown in Equation (2) are 

  and  

 (2) 

where QZ is a control limit width, μ is a mean 
in the process and σ is a standard deviation in 
the process. The stopping time is determined by 

 and then h is  UCL and 
LCL is  .

2.2  Extended Exponentially Weighted Moving  
Average control chart (EEWMA)

Naveed et al. [8] presented the EEWMA chart. It is 
a modification of the traditional EWMA chart. The 
performance control chart is very good at seeing even 
the smallest changes in the monitored process. The  
following equation in Equation (3) can be used to 
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express the EEWMA statistic.

 (3)

where Xt is an observation, which is a sequence of 
quadratic trend model, λ1 and λ2 are exponential 
smoothing parameters with λ1 ∈ (0,1) and λ2 ∈ (0,λ1),  
E0 is the initial value of the EEWMA statistic, E0 = u. 
 The upper and lower control limits (UCL and 
LCL) shown in Equation (4) are 

  and

 (4)

where QE is a control limit width, μ is a mean 
in the process and σ is a standard deviation in 
the process. The stopping time is determined by 

 and then b is UCL and 
a is LCL. 

2.3  The explicit formula of the ARL on the EEWMA 
control chart for quadratic trend AR(p) model

For a random variable sequence, Xt is an observation  
of a quadratic trend AR(p) model. The quadratic 
trend AR(p) model can be expressed in Equation (5) 
as follows:

 (5)

where η, β, γ are constants of the quadratic trend model,   
ϕi is an autoregressive coefficient at i = 1, 2,..., p or  
(|ϕp| < 1). ε t is a white noise with exponential  
distribution. (εt ~ Exp(α)). The EEWMA statistic E1 is 
given as follows

 And then, it can be rearranged in Equation (6) as 
follows:

 (6)

where E1 is in an in-control process can be reorganized 
in the error term ε1 as:

Let C(u) denotes the ARL on the EEWMA chart for the 
quadratic trend AR(p) observations. The function C(u), 
as shown in Equation (7), can be calculated using the 
Fredholm integral equation of the second type [26], 
which is presented as follows: 

 (7)

 Consequently, the following is how the function 
C(u) is expressed in Equation (8):  

 (8)

When
 

 is specified in order to modify the  

integration variable,  C(u) is rearranged as:

 (9)

If  then C(u) is shown in Equation (10) as:

 (10)

where 
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Consequently, .  (11)

 Next, substitute Equation (11) into the constant 
L to solve for the constant L,

 (12)

 Substituting constant C(u) from Equation (12) 
with Equation (11), then  can be assigned as

 (13)

 Therefore, the solution of Equation (13) is an 
explicit formula of ARL on the EEWMA control chart 
for the quadratic trend AR(p) model. The in-control 
process is α = α0, whereas the out-of-control process 
is α = α1 as well as α1 = (1 + δ)α0, and δ is the shift size 
in the process.

2.4  Numerical integral equation of the ARL on the 
EEWMA control chart for the quadratic trend AR(p) 
models

Equation (9) is used to generate the numerical integral 
equation (NIE) technique for accuracy with the ARL 
of the explicit formula. Let  be the estimated ARL  
value that is used by the composite midpoint quadrature  
rule [12]. It is approximated by Gauss-Legendre’s rule 

that can be represented by Equation (14).

 (14)

 The m linear equation system is presented as 
follows:

  or 

  or 

where , 1m×1 =  
[1,1,...,1]Tand Im = diag(1,1,...,1).

 Let Im×m be a matrix. The m to mth element of R is 
defined as the solution to the m linear equation, which 
is shown as follows:

 
 Lastly, the solution of Equation (15) is a numerical  
estimate for the function  :

 (15)

when sj is a group of the division point on the interval [a,b]  
as sj = (j–0.0)wj +a, j = 1, 2, 3,..., m and then wj is a 
weight of the composite midpoint formula .

2.5  The ARL’s existence and uniqueness

Let T represent a continuous function that operates 
under the categories of all.

 (16)
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 The fixed-point equation T(C(u)) = C(u) has a 
unique solution if operator T is a contraction. 

Theorem 1 Banach’s Fixed-point Theorem: 
Let T = X → X represent a mapping of contractions 
with the contraction constant r ∈ [0,1), and let X  
represent a whole metric space. 
 There is a unique C(∙) ∈ X, and then T(C(u)) = 
C(u), i.e., a unique fixed-point in X. Next step, C1, C2 
are given to be a solution to Equation (9) for all C1, C2 
∈ X, such that ||T(C1) – T(C2)||≤r||C1 – C2|| is proved as 
follows below.

Proof: Let T be a contraction mapping as specified in 
Equation (16) for all C1, C2 ∈ u[a,b],
Thus, ||T(C1) – T(C2)||≤r||C1 – C2||, ∀C1, C2 ∈ u[a,b] 
with r ∈ [0,1) under the norm , so 

3 Results

To compare the ARL solution of the explicit formulas 
and NIE method for the ARL results, the absolute 
relative change (ARC) [27] is computed as follows:

 (17)

 Moreover, the relative mean index (RMI) [28] is  
employed to evaluate each control chart's effectiveness 
under different λ conditions. The RMI is calculated 
using the formula shown below:

 (18) 

where ARLi(c) is ARL of each control chart for the 
determined shift sizes of row i, ARLi(s) is the lowest 
ARL of row from all control charts. The control chart 
had the best performance in change detection, as seen 
by the control chart's lowest RMI score.

3.1  Experimental results

For this section, a simulation of the in-control process 
is typically given ARL0 = 370 and then the initial  
parameter value was studied at α0 = 1. The out-of-control  
process, α1 = (1 + δ)α0 is computed by determining  
shift sizes (δ) to be 0.001, 0.002, 0.003, 0.005, 0.01, 
0.03, 0.05, 0.1, 0.5 and 1. Since the lower bound α is 
studied on the exponential distribution of εt, which 
is in the interval [0, ∞), the upper bound b is found 
by using the least a to be 0. Additionally, the CPU 
time (PC System: windows10, 64-bit, Intel® Core™ 
i5-8250U 1.60 GHz 1.80 GHz, RAM 4 GB) was also 
supplied to compute the speed test results in seconds. 
MATHEMATICA© was used to compute the analytical  
outcomes.
 In Tables 1 and 2, the ARL of the EEWMA control 
chart at λ2 = 0.01 is computed by using two techniques 
such that the explicit formula and NIE method with 
various λ1 and ϕi for the quadratic trend AR(1) and  
quadratic trend AR(2) models. The findings show 
that the ARL values produced using explicit formulas  
provide outcomes that are comparable to those of NIE. 
The computational time durations for the analytical  
solutions are about 3 s whereas the computational time 
for the explicit formula is almost instantaneous. Both 
solutions have the ARC% , which is calculated from  
Equation (17), the value was shown as less than 0.00023%. 
 The efficiency of control charts is shown by the 
quadratic trend AR(1) model in Table 3 and Figure 1 
and the quadratic trend AR(2) model in Table 4 and 
Figure 3. The finding indicates that the EEWMA 
control chart can be effectively detected to be faster 
than the EWMA control chart for minor changes. 
Correspondingly, the RMI , which is computed from 
Equation (18), the results were shown that the RMI of 
the EEWMA control charts various λ2 is lower than the 
EWMA control chart. In addition, the EEWMA control 
chart has higher efficiency if λ2 is increased.  
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 Moreover, the capability of the control chart was 
considered various values of the smoothing constant 
(λ1 = 0.05, 0.10, 0.15 and 0.30). The control charts are 
more efficient when λ1 is decreased as illustrated in 
Figures 2 and 4.

3.2  Applications results

An operating system (OS) is a group of programs that 
control computer hardware resources and offer shared 

services for software applications. The operating  
system is a crucial part of the computer's system 
software. Typically, an operating system is necessary 
for applications to function. Whether it is a desktop 
or laptop, a smartphone, or your video game console, 
every computer requires an operating system. The 
three most widely used operating systems for personal 
computers are iOS, Microsoft Windows, and Linux. In 
this case study, two practical datasets are used, which 
are the percentages of internet users with Windows 7 

Table 1: Comparing the ARL0 from two techniques for the quadratic trend AR(1) model on the EEWMA control 
chart at λ1, = 0.05, λ2 = 0.01, η = 0.01, β = 0.1 and γ = 0.1  

ϕ1 b Explicit Formula (Computational Time) NIE Method (Computational Time) ARC%
0.1 0.03063686 370.0392251 (<0.1) 370.0391840 (2.970) 0.000011
0.2 0.04154282 370.0530132 (<0.1) 370.0529344 (2.578) 0.000021
0.3 0.05642129 370.0174970 (<0.1) 370.0173433 (2.531) 0.000042
–0.1 0.01671633 370.0470954 (<0.1) 370.0470837 (3.001) 0.000003
–0.2 0.01236109 370.0417634 (<0.1) 370.0417572 (2.533) 0.000002
–0.3 0.00914490 370.0354831 (<0.1) 370.0354797 (2.624) 0.000001

Table 2: Comparing the ARL0 from two techniques for the quadratic trend AR(2) model on the EEWMA control 
chart at λ1, = 0.05, λ2 = 0.01, η = 0.01, β = 0.1 and γ = 0.1

ϕ1 ϕ2 b Explicit Formula (Computational Time) NIE Method (Computational Time) ARC%

0.1
0.1 0.02262059 370.0331986 (<0.1) 370.0331769 (3.046) 0.000006
–0.1 0.03390498 370.0633411 (<0.1) 370.0632902 (3.093) 0.000014

0.2
0.2 0.02768736 370.0641122 (<0.1) 370.0640790 (2.733) 0.000009
–0.2 0.06251077 370.0537848 (<0.1) 370.0535916 (2.594) 0.000052

0.3
0.3 0.03390498 370.0633411 (<0.1) 370.0632902 (2.845) 0.000014
–0.3 0.11641094 370.0313606 (<0.1) 370.0305423 (2.672) 0.000221

Figure 1: ARL comparing of the EWMA and the EEWMA with different λ1 control charts for the quadratic trend 
AR(1) model based on various λ1 situations
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and iOS operating systems in Thailand. The fitting of 
forecast time series dataset models was investigated 
for two datasets using the autocorrelation function 
(ACF) and partial autocorrelation function (PACF). 
Both datasets are time series that are stationary.  
Researchers confirmed that an exponential distribution 

follows white noise by the Kolmogorov-Smirnov test 
(p-value > 0.05). 
 For the quadratic trend AR(1) model, the dataset is 
the percentages of internet users with an operating system  
of Windows 7 collected monthly from April 2010 to 
March 2015, and this model can be assigned as follows:

Table 3: Comparing the ARL for the quadratic trend AR(1) model on the EWMA and EEWMA control chart 
with different λ at ϕ1 = 0.2, η = 0, β = 0.1, γ = –0.5 and ARL0 = 370

λ1 Chart b Shift Sizes RMI0 0.001 0.002 0.003 0.005 0.01 0.03 0.05 0.1 0.5 1

0.05

EWMA 0.090526 370 283.0 229.1 192.5 146.0 91.3 37.1 23.6 12.7 3.6 2.4 1.1
EEWMA1 0.0484026 370 234.2 171.4 135.3 95.4 55.2 21.2 13.5 7.4 2.4 1.8 0.4
EEWMA2 0.0262527 370 209.2 145.9 112.1 76.8 43.3 16.3 10.3 5.8 2.0 1.5 0.2
EEWMA3 0.0143325 370 190.0 128.0 96.6 65.0 36.0 13.4 8.5 4.8 1.7 1.3 0

0.10

EWMA 0.1900655 370 292.1 241.2 205.4 158.6 101.1 41.8 26.6 14.3 3.8 2.5 0.8
EEWMA1 0.1362201 370 257.5 197.6 160.4 116.7 69.7 27.3 17.4 9.5 2.9 2.0 0.3
EEWMA2 0.0987531 370 236.9 174.3 138.0 97.6 56.7 21.8 13.8 7.6 2.5 1.8 0.1
EEWMA3 0.0721198 370 222.0 158.7 123.6 85.9 49.0 18.6 11.8 6.5 2.2 1.6 0

0.15

EWMA 0.3006137 370 301.9 254.9 220.6 173.9 113.8 48.1 30.7 16.4 4.2 2.6 0.7
EEWMA1 0.2368993 370 272.8 216.1 179.0 133.4 81.8 32.7 20.8 11.3 3.3 2.2 0.3
EEWMA2 0.1885898 370 253.6 193.0 155.9 112.8 67.0 26.1 16.6 9.1 2.8 2.0 0.1
EEWMA3 0.1512147 370 239.5 177.3 140.8 99.9 58.2 22.4 14.2 7.8 2.5 1.8 0

0.30

EWMA 0.732374 370 339.7 313.9 291.6 255.2 193.8 96.6 63.0 32.5 6.2 3.4 0.9
EEWMA1 0.626235 370 313.0 271.2 239.2 193.5 131.0 57.3 36.7 19.5 4.7 2.8 0.4
EEWMA2 0.541446 370 293.6 243.3 207.7 160.8 103.0 42.7 27.2 14.6 3.9 2.5 0.1
EEWMA3 0.472013 370 278.6 223.4 186.5 140.4 87.0 35.1 22.3 12.1 3.4 2.3 0

Notation: EEWMA1, EEWMA2, EEWMA3 denote the EEWMA control chart with λ2 to be 0.01, 0.02, 0.03, respectively

Figure 2: ARL comparing of each control chart based on different λ1 for the quadratic trend AR(1) model on 
the EWMA and the EEWMA with various λ2 control charts. 



K. Karoon et al., “On the Performance of the Extended EWMA Control Chart for Monitoring process Mean Based on Autocorrelated Data.”

8 Applied Science and Engineering Progress, Vol. 17, No. 2, 2024, 6599

 

where . 
 For the quadratic trend AR(2) model, the dataset is 
the percentages of internet users with an operating system  
of  iOS collected monthly from October 2011 to September  

2016, and this model can be assigned as follows:

where .

Figure 4: ARL comparing each control chart based on different λ1 for the quadratic trend AR(2) model on the 
EWMA and the EEWMA with various λ2 control charts.

Figure 3: ARL comparing of the EWMA and the EEWMA with different λ2 control charts for the quadratic trend 
AR(2) model based on various λ1 situations.
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 Based on the quadratic trend AR(1) model in  
Table 5, the ARL evaluating the EWMA against the 
EEWMA control charts is assessed. And then, the ARL 
of control charts for the quadratic trend AR(2) model 
is presented in Table 6. The results of both datasets 
are comparable to those of simulated data, and it is 
discovered that the EEWMA control charts outperform 

the EWMA control chart with small shift detection, so 
these charts are adjusted λ2 to be larger, as illustrated 
in Figures 5 and 7. When the ARLs were compared 
with various control charts based on different λ1, the 
results showed that λ1 = 0.05 provided the least ARL, 
as illustrated in Figures 6 and 8, and then demonstrated 
how the outcomes matched those of the simulation. 

Table 4: The ARL comparing for the quadratic trend AR(2) model on the EWMA and the EEWMA control 
charts with different λ at ϕ1 = ϕ2 = 0.2, η = 0, β = 0.1, γ = –0.5 and ARL0 = 370

λ1 Chart b
Shift Sizes

RMI
0 0.001 0.002 0.003 0.005 0.01 0.03 0.05 0.1 0.5 1

0.05

EWMA 0.07348406 370 261.5 202.3 165.1 120.8 72.6 28.6 18.2 10.0 3.0 2.1 1.1
EEWMA1 0.03222897 370 216.6 153.3 118.8 82.0 46.6 17.6 11.2 6.2 2.1 1.6 0.4
EEWMA2 0.01435306 370 190.1 128.1 96.7 65.0 36.0 13.4 8.5 4.8 1.7 1.3 0.2
EEWMA3 0.006428656 370 168.7 109.4 81.1 53.6 29.2 10.8 6.9 3.9 1.5 1.2 0

0.10

EWMA 0.1527953 370 267.6 209.7 172.5 127.4 77.4 30.7 19.5 10.7 3.2 2.2 0.7
EEWMA1 0.09925664 370 237.5 175.0 138.7 98.2 57.0 21.9 13.9 7.7 2.5 1.8 0.3
EEWMA2 0.06530968 370 218.3 155.0 120.3 83.2 47.3 17.9 11.4 6.3 2.1 1.6 0.1
EEWMA3 0.04329577 370 203.4 140.4 107.3 73.1 41.0 15.4 9.7 5.4 1.9 1.4 0

0.15

EWMA 0.238938 370 274.1 217.8 180.7 135.0 82.9 33.2 21.1 11.5 3.3 2.2 0.5
EEWMA1 0.1765303 370 249.6 188.5 151.5 108.9 64.3 25.0 15.9 8.7 2.7 1.9 0.3
EEWMA2 0.131895 370 232.9 170.1 134.0 94.3 54.5 20.9 13.2 7.3 2.4 1.7 0.1
EEWMA3 0.09928833 370 220.0 156.7 121.8 84.4 48.1 18.2 11.6 6.4 2.1 1.6 0.0

0.30

EWMA 0.553448 370 296.8 247.8 212.8 165.9 107.2 44.8 28.6 15.3 4.0 2.6 0.5
EEWMA1 0.4609378 370 277.1 221.6 184.7 138.6 85.7 34.5 21.9 11.9 3.4 2.3 0.2
EEWMA2 0.3879571 370 262.3 203.3 166.1 121.7 73.2 28.8 18.3 10.0 3.0 2.1 0.1
EEWMA3 0.3290862 370 250.6 189.6 152.5 109.8 64.9 25.2 16.0 8.8 2.7 1.9 0.0

Table 5: The ARL comparing for the quadratic trend AR(1) model on the EWMA and the extended EWMA 
control charts under the observations of percentage of operation system users by Windows 7 at ARL0 = 370 

λ1 Chart b
Shift Sizes

RMI
0 0.001 0.002 0.003 0.005 0.01 0.03 0.05 0.1 0.5 1

0.05

EWMA 0.0315564 370 268.7 211.0 173.7 132.9 79.8 31.8 20.3 11.0 3.3 2.2 2.2
EEWMA1 0.00651451 370 192.2 130.0 98.3 69.1 37.6 14.0 9.0 5.0 1.8 1.4 0.7
EEWMA2 0.00138389 370 152.6 96.3 70.5 48.1 25.4 9.4 6.0 3.4 1.4 1.2 0.2
EEWMA3 0.000295437 370 124.4 75.0 53.8 36.1 18.8 6.9 4.5 2.6 1.2 1.1 0

0.10

EWMA 0.0659004 370 276.1 220.2 183.2 141.7 86.3 34.7 22.2 12.0 3.4 2.3 1.3
EEWMA1 0.0289555 370 221.6 158.3 123.2 88.9 49.8 18.9 12.1 6.7 2.2 1.6 0.5
EEWMA2 0.0131174 370 193.1 130.8 99.0 69.6 37.9 14.1 9.0 5.0 1.8 1.4 0.2
EEWMA3 0.00601396 370 171.0 111.4 82.7 57.1 30.6 11.3 7.2 4.1 1.5 1.2 0

0.15

EWMA 0.1035726 370 284.0 230.5 194.0 152.0 94.1 38.4 24.6 13.2 3.7 2.4 1.1
EEWMA1 0.0582247 370 237.5 175.0 138.6 101.8 58.2 22.4 14.3 7.9 2.5 1.8 0.4
EEWMA2 0.0337127 370 212.5 149.2 115.0 82.3 45.7 17.2 11.0 6.1 2.1 1.5 0.1
EEWMA3 0.019811 370 193.9 131.5 99.6 70.1 38.2 14.3 9.1 5.1 1.8 1.4 0

0.30

EWMA 0.2451441 370 313.1 271.1 239.1 198.1 133.0 58.3 37.6 19.9 4.7 2.9 1.0
EEWMA1 0.17294 370 271.9 215.0 177.9 136.7 82.5 33.0 21.1 11.4 3.3 2.2 0.4
EEWMA2 0.1259182 370 247.6 186.2 149.3 111.0 64.4 25.0 15.9 8.7 2.7 1.9 0.1
EEWMA3 0.093422 370 230.7 167.7 131.9 96.1 54.4 20.8 13.2 7.3 2.3 1.7 0
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Table 6: Comparing ARL for the quadratic trend AR(2) model on the EWMA and EEWMA control charts under 
the observations of the percentage of operation system users by iOS at  ARL0 = 370 

λ1 Chart b
Shift Sizes

RMI
0 0.001 0.002 0.003 0.005 0.01 0.03 0.05 0.1 0.5 1

0.05

EWMA 0.0195667 370 224.2 161.0 125.7 87.5 50.9 19.3 12.2 6.8 2.3 1.7 1.8
EEWMA1 0.002535406 370 162.2 104.1 76.8 50.5 27.9 10.2 6.5 3.7 1.4 1.2 0.7
EEWMA2 0.000333965 370 123.9 74.6 53.5 34.3 18.6 6.8 4.4 2.6 1.2 1.1 0.2
EEWMA3 0.0000440676 370 99.3 57.6 40.6 25.7 13.9 5.1 3.4 2.0 1.1 1.0 0.0

0.10

EWMA 0.03993977 370 226.8 163.7 128.2 89.5 52.2 19.8 12.6 6.9 2.3 1.7 0.9
EEWMA1 0.01411205 370 189.6 127.7 96.3 64.8 36.5 13.5 8.6 4.8 1.7 1.3 0.4
EEWMA2 0.005081245 370 162.5 104.3 76.9 50.6 28.0 10.3 6.5 3.7 1.4 1.2 0.2
EEWMA3 0.001840641 370 141.0 87.3 63.3 41.0 22.4 8.2 5.3 3.0 1.3 1.1 0.0

0.15

EWMA 0.0611885 370 229.5 166.5 130.8 91.6 53.6 20.4 12.9 7.1 2.3 1.7 0.7
EEWMA1 0.03013294 370 201.5 138.6 105.8 71.9 40.9 15.2 9.7 5.4 1.9 1.4 0.3
EEWMA2 0.01510878 370 180.4 119.4 89.4 59.6 33.4 12.3 7.8 4.4 1.6 1.3 0.1
EEWMA3 0.0076376 370 162.7 104.5 77.1 50.7 28.0 10.3 6.5 3.7 1.4 1.2 0

0.30

EWMA 0.1310330 370 238.1 175.7 139.3 98.7 58.3 22.3 14.1 7.7 2.5 1.8 0.4
EEWMA1 0.0895099 370 219.7 156.4 121.5 84.2 48.7 18.3 11.6 6.4 2.1 1.6 0.2
EEWMA2 0.0620826 370 205.1 142.1 108.8 74.2 42.4 15.8 10.0 5.5 1.9 1.4 0.1
EEWMA3 0.0434716 370 192.8 130.5 98.8 66.6 37.6 13.9 8.8 4.9 1.7 1.4 0

Figure 5: ARL comparing of the EWMA and the EEWMA with different λ2 control charts for the quadratic trend 
AR(1) model based on various λ1 situations for the percentages of internet users with Windows 7 in Thailand.  
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Figure 6: ARL comparing each control chart based on different λ1 for the quadratic trend AR(1) model on the 
EWMA and the EEWMA with various λ2 control charts for the percentages of internet users with Windows 7 
in Thailand.

Figure 7: ARL comparing of the EWMA and the EEWMA with different λ2 control charts for the quadratic 
trend AR(2) model based on various λ1 situations for the percentages of internet users with iOS in Thailand.



K. Karoon et al., “On the Performance of the Extended EWMA Control Chart for Monitoring process Mean Based on Autocorrelated Data.”

12 Applied Science and Engineering Progress, Vol. 17, No. 2, 2024, 6599

4 Discussions and Conclusions

The ARL was utilized in the research to evaluate the 
effectiveness of control charts. The explicit formulas  
provide a suitable NIE method for building the ARL 
substitute. The quadratic trend AR(1) and quadratic  
trend AR(2) represent the analytical results for 
the model. The results are shown with the NIE  
approximations, with an absolute relative change of 
less than 0.00023%. When using the explicit formulas, 
the ARL calculation took nearly no time at all in terms 
of computational time but took about 3 s when utilizing 
the NIE methods. The ARL performance comparison 
using explicit formulas on the EEWMA control charts 
with different λ outperformed the EWMA control chart 
running the quadratic trend AR(1) or AR(2) models 
when δ is small. Correspondingly, the relative mean 
index (RMI) is used to examine the ARL’s comparative 
performance under various λ2 conditions. The EEWMA 
control chart has given a higher capability for detecting  
shifts if λ2 has been higher. When the comparative 
performance of the ARL under various λ1 conditions is 
examined. The simulation studies and the performance 
illustration with real-world datasets that are using data 

to represent the percentages of Windows 7 and iOS in 
Thailand provided similar results. Hence, an exponential  
smoothing parameter of 0.05 was proposed to be used,  
and that is used based on the EEWMA control chart when 
the data are of the exponential white noise distribution. 
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