
173

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 3, pp. 173–183, 2018

Hybrid Metaheuristics and Linear Programming for Finite Capacity MRP in Multi-
Stage Flexible Flow Shop with Permutation and Non-permutation Scheduling Options

Watchara Songserm and Teeradej Wuttipornpun*
Department of Industrial Engineering, Faculty of Engineering, King Mongkut’s University of Technology North
Bangkok, Bangkok, Thailand

Chorkaew Jaturanonda
Department of Production Engineering, Faculty of Engineering, King Mongkut’s University of Technology
Thonburi, Bangkok, Thailand

* Corresponding author. E-mail: teeradejw@kmutnb.ac.th DOI: 10.14416/j.ijast.2018.05.004
Received: 11 May 2017; Accepted: 13 July 2017; Published online: 22 May 2018
© 2018 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
This paper presents a new algorithm for Finite Capacity MRP (FCMRP) in a multi-stage flexible flow shop. The
proposed algorithm consists of four conventional metaheuristics namely, Genetic Algorithm (GA), Tabu Search
(TS), Variable Neighborhood Search (VNS), and Simulated Annealing (SA) hybridized with Linear Programming
(LP). The objective is to minimize the total cost, which is the sum of tardiness, earliness, and flow-time costs.
There are two main steps of the proposed algorithm. Firstly, an efficient sequence of orders is generated by the
proposed metaheuristics in a way that reduce the total cost. In this step, the required operations of the orders
are scheduled based on two scheduling options called permutation and non-permutation. Secondly, the total
cost is minimized by the LP model. The required parameters of the metaheuristics are tuned by using real data
from automotive companies. The result shows that the proposed algorithm significantly outperforms the existing
algorithm, and GA obtains the best total cost.

Keywords: Finite capacity MRP, Flexible flow shop, Metaheuristic, Linear programming, Permutation scheduling,
Non-permutation scheduling

Research Article

1 Introduction

Material Requirement Planning (MRP) is a powerful
planning tool used to generate production and purchasing
plans. Unfortunately, the production plan obtained
from the MRP system is reported that it could not be
implemented on shop floor. A reason for this is that
MRP assumes infinite resource capacity or constant
lead-time [1]–[3]. This problem is later called Finite
Capacity MRP (FCMRP). Since the FCMRP problem for
industrial scale instances is normally the NP-hard class,
the metaheuristic algorithm is one of the appropriate

approaches to solve the problem [4]–[6]. In the literature,
there are two approaches of metaheuristic algorithms
developed for the FCMRP problems summarized
in Table 1. The first approach is called population
search algorithm. It includes Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), and Cuckoo Search (CS) [7]–[18].
The second approach is called non-population search
algorithm. It includes TS, Iterated Local Search (ILS),
Variable Neighborhood Search (VNS), and Simulated
Annealing (SA) [19]–[34]. Based on the principles of
each metaheuristic, the population search algorithm

Please cite this article as: W. Songserm, T. Wuttipornpun, and C. Jaturanonda, “Hybrid metaheuristics and linear
programming for finite capacity MRP in multi-stage flexible flow shop with permutation and non-permutation
scheduling options,” KMUTNB Int J Appl Sci Technol, vol. 11, no. 3, pp. 173–183, Jul.–Sep. 2018.

http://dx.doi.org/10.14416/j.ijast.2018.05.004

174

W. Songserm et al., “Hybrid Metaheuristics and Linear Programming for Finite Capacity MRP in Multi-Stage Flexible Flow Shop with
Permutation and Non-permutation Scheduling Options.”

seems to be more efficient than the other. However,
there is no strong conclusion that the population search
approach is always better than the non-population one.
It depends on mostly about the problem characteristics.
 This paper presented four metaheuristic algorithms,
which are GA, TS, SA, and VNS, hybridized with
an LP model to solve the industrial scale FCMRP
problem. The metaheuristics are used to generate the
efficient sequence of orders on machines based on
permutation and non-permutation scheduling concepts,
whereas the LP model is used to schedule the required
operations of orders to the optimal start times. The
proposed algorithm is intently developed to improve
the solution obtained from the existing FCMRP

algorithm developed by Wuttipornpun and Yenradee
[6]. The objective is to minimize the total cost defined
as the sum of tardiness, earliness, and flow-time costs.
The production shop used to evaluate the performance
of the proposed algorithm is a multi-stage flexible
flow shop. The planning horizon is one month without
overtimes and preemptive options.
 The remaining of the paper is organized as follows.
Section 2 deals with details of the proposed algorithm.
Case studies and experiments for parameter tuning and
performance evaluation are explained in Section 3.
Results and discussion are provided in Section 4. Finally,
the conclusion of this paper and recommendations
for future research are given in Section 5.

Table 1: Algorithm developed for the FCMRP problems
Approach Authors Production Shops Objectives

Population Search

GA
Chen et al. [7] Job shop Tardiness, idle time and makespan
Wang & Liu [8] Flexible flow shop Makespan
Rahman, Sarker & Essam [9] Permutation flow shop Setup and holding cost

PSO
Kuo et al. [10] Flow shop Makespan
Tang et al., 2016 [11] Flexible flow shop Makespan
Eddaly, Jarboui & Siarry [12] Blocking flow shop Makespan

ACO
Yagmahan & Yenisey [13] Flow shop Makespan and flow-time
Ahmadizar [14] Permutation flow shop Makespan
Zhang & Jing [15] Permutation flow shop Makespan

CS
Marichelvam, Prabaharan & Yang [16] Flexible flow shop Makespan
Dasgupta & Das [17] Flow shop Makespan and flow-time
Komaki et al. [18] Flow shop Makespan

Non-population Search

TS

Grabowski & Pempera [19] Permutation flow shop Makespan
Chen, Pan & Wu [20] Permutation flow shop Makespan
Liao & Huang [21] Two machine flow shop Makespan
Bozejko, Pempera & Smutnicki [22] Flexible flow shop Makespan

ILS

Pan & Ruiz [23] Flow shop Flow-time
Dong et al. [24] Permutation flow shop Flow-time
Wang et al. [25] Flow shop Makespan
Xua et al. [26] Permutation flow shop Makespan

VNS

Costa, Goldbarg & Goldbarg [27] Flow shop Flow-time
Hallah [28] Permutation flow shop Earliness and tardiness
Lei [29] Flow shop Makespan and tardiness
Rifai, Ngugen & Dawal [30] Permutation flow shop Makespan, and average tardiness

SA

Low [31] Flow shop Flow-time
Naderi, Moghaddam, & Khalili [32] Flow shop Makespan and tardiness
Jarosław, Czeslaw & Domonik [33] Flow shop Makespan and tardiness
Nikzad et al. [34] Flexible flow shop Makespan

175

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 3, pp. 173–183, 2018

2 Details of the Proposed Algorithm

The proposed algorithm has two main steps as shown
in Figure 1. They are explained as follows.

Step 1: Construct the efficient sequence of orders
 The objective of this step is to construct the
efficient sequence of orders by the conventional
GA, SA, VNS, and TS algorithms. The conventional
procedures of each algorithm are shown in Figures 2,
3, 4, and 5 respectively. Note that details of these
metaheuristics are available in Artificial Intelligent
(AI) books [35], [36].
 In each iteration of a given metaheuristic
algorithm, the sequence of orders is evaluated to obtain
the total cost calculated by Equation (1), where Qi, ti,
ei, and fi are the order quantity, tardiness, earliness,
and flow-time of the ith order. CTi, CEi, and CFi are
the cost per unit of tardiness, earliness, and flow-time
of the ith order.

Figure 1: Pseudo code of the proposed algorithm.

Figure 2: Pseudo code of GA.

Figure 4: Pseudo code of VNS.

Figure 3: Pseudo code of SA.

overall procedure: the proposed algorithm
input: orders, bill of materials, and machines information
output: solution from the proposed algorithm
begin
//Step 1: Construct the efficient sequence of orders

apply GA, TS, SA, and VNS to generate the sequence of orders;

schedule the required operations of orders to less tardiness machines;

//Step 2: Optimize the start times of operations
apply LP to the schedule from step 1;

output: solution from the proposed algorithm
end;

overall procedure: GA algorithm
input: orders, bill of materials, and machines information, GA parameters
output: solution from the GA algorithm
begin

n←0; //n: generation number
//Step 1: Construct initial population

create Population(n) consists of Y chromosomes; //Y: population size
while (not terminating condition of GA) do

//Step 2: Evaluate performance of each chromosome
Each chromosome is evaluated its performance through the total cost

//Step 3: Selection
apply elitist method to Population(n);
select Parent(n) from Population(n) by roulette wheel method;

//Step 4: Apply genetic operators
crossover Parent(n) to get Offspring(n);
mutate Offspring(n) to get MOffspring(n); //MOffspring: mutated offspring
Population(n+1)←a sequence from elitist method and MOffspring(n);
calculate total cost of Population(n+1);
n←n+1;

end;
select the sequence with minimum total cost from Population(n);

//Step 5: Apply the LP model
apply LP to the sequence from step 4;

output: solution from the GA algorithm
end;

Figure 5: Pseudo code of TS.

overall procedure: TS algorithm

input: orders, bill of materials, and machines information, TS parameters

output: solution from the TS algorithm

begin
 create S; //S: a sequence of orders

 while (not terminating condition of TS) do
 generate neighbourhood sequences from S and check with TL;

 evaluate the neighbourhood sequences;

 select the improved sequence and update TL;

 S←improved sequence;

 end;

output: solution from the TS algorithm

end;

overall procedure: VNS algorithm
input: orders, bill of materials, and machines information, VNS parameters
output: solution from the VNS algorithm
begin
 create S; //S: a sequence of orders
 while (not terminating condition of VNS) do
 NS= 1; //NS: neighbourhood structures
 while (not terminating condition of NS) do
 S’← perturbation S;
 generate neighbourhood sequences from S’;
 evaluate neighbourhood sequences;
 select the improved sequence;
 if (improved sequence < S)
 S←improved sequence;
 NS = 1;
 else
 NS = NS + 1;
 end;
 end;
 end;
output: solution from the VNS algorithm
end;

overall procedure : SA algorithm
input : orders, bill of materials, and machines information, SA parameters
output : solution from the SA algorithm
begin
 create S; //S: : a sequence of orders
 set T; // T: initial temperature
 while (not terminating condition of SA) do
 generate neighbourhood sequences from S;
 evaluate the neighbourhood sequences;
 select the improved sequence;
 if (improved sequence < S)
 S←improved sequence;
 else
 accept improved sequence as S with probability;
 end;
 update T;
 end;
output : solution from the SA algorithm
end;

176

W. Songserm et al., “Hybrid Metaheuristics and Linear Programming for Finite Capacity MRP in Multi-Stage Flexible Flow Shop with
Permutation and Non-permutation Scheduling Options.”

 (1)

 To calculate the total cost, the required operations
of orders in the sequence must be scheduled to machines
in order to calculate the tardiness, earliness, and flow-
time. It can be done by the following steps: (1) the
orders in the sequence are exploded by variable lead-
time MRP (VMRP) to obtain the required operations
(see Wuttipornpun and Yenradee [6] for details of
VMRP), (2) these operations are scheduled to less
tardiness machines by forward scheduling based on
permutation and non-permutation scheduling options,
and (3) the tardiness, earliness, and flow-time of each
order are calculated by the start time, due time, and
completion time.
 Details of the required operations (Oi,j) of the four
orders (Oi) after VMRP explosion shown in Figure 6
are used to demonstrate this step. Suppose that a sequence

of orders is O4 O3 O2 O1. When the permutation
option is selected, all operations must be scheduled based
on the sequence of orders in a way that the operations
of the first order in the sequence are scheduled to less
tardiness machines first, and the operations of the
second order in the sequence are scheduled next and
so on. By this way, it is obvious that all machines have
the same sequence of operations that complies with the
permutation sequencing concept (see second column of
Table 2, M1 to M6). When the non-permutation option
is selected, the operation that is scheduled later based
on the sequence of orders may be started earlier than
the operation that is scheduled before. It results in
different sequence of operations of each machine as
shown in the fourth column of Table 2. It can be seen
that the sequence of operations on M4 is different from
other machines. The total costs of these sequences
are shown in Table 2. Note that the permutation and
non-permutation scheduling concepts are applied and
evaluated separately.

Figure 6: Details of operations after applying the VMRP explosion.

O3,3
 p3,3,4 = 7
 p3,3,6 = 9
 Due date = 27
 Release date = 19

O3,2
 p3,2,3 = 4
 p3,2,4 = 6
 Due date = 19
 Release date = 14

O3,1
 p3,1,1 = 7
 p3,1,2 = 7
 Due date = 14
 Release date = 7

Order O3
Q3 = 14 pcs
T3 = $2.5/pcs*day
E3 = $0.2/pcs*day
F3 = $0.1/pcs*day

O1,4
 p1,4,5 = 9
 p1,4,6 = 11
 Due date = 26
 Release date = 16

O1,2
 p1,2,2 = 6
 p1,2,3 = 6
 Due date = 16
 Release date = 10

O1,1
 p1,1,2 = 5
 Due date = 10
 Release date = 5

Order O1
Q1 = 12 pcs
T1 = $4/pcs*day
E1 = $0.2/pcs*day
F1 = $0.1/pcs*day

O1,3
 p1,3,4 = 7
 Due date = 16
 Release date = 9

O2,4
 p2,4,5 = 8
 p2,4,6 = 8
 Due date = 30
 Release date = 22

O2,3
 p2,3,5 = 6
 Due date = 22
 Release date = 16

O2,1
 p2,1,1 = 9
 p2,1,2 = 7
 Due date = 16
 Release date = 8

Order O2
Q2 = 10 pcs
T2 = $3/pcs*day
E2 = $0.2/pcs*day
F2 = $0.1/pcs*day

O2,2
 p2,2,3 = 4
 p2,2,4 = 4
 Due date = 16
 Release date = 12

O4,5
 p4,5,5 = 8
 p4,5,6 = 6
 Due date = 29
 Release date = 22

O4,3
 p4,3,3 = 5
 p4,3,4 = 5
 Due date = 22
 Release date = 17

O4,1
 p4,1,1 = 5
 p4,1,2 = 7
 Due date = 17
 Release date = 11

Order O4
Q4 = 8 pcs
T4 = $2/pcs*day
E4 = $0.1/pcs*day
F4 = $0.05/pcs*day

O4,2
 p4,2,3 = 6
 Due date = 18
 Release date = 12

O4,4
 p4,4,5 = 4
 Due date = 22
 Release date = 18

All ratios of
Parent : Child

1 : 1

 Oi,j = Order i Operation j
 pi,j,k = production lead-time of order i operation j

on machine k

177

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 3, pp. 173–183, 2018

Step 2: Optimize the start times of the operations
 From the first step, the operations are scheduled
to machines by forward scheduling. As a result, the
start times of some operations may not be optimal.
This step tries to determine the optimal start times of
all operations by the LP model in order to minimize
the total cost. In the LP model, only the start times of
operations are optimized, whereas the sequence of
operations on machines obtained from the first step
is still maintained. The LP model is formulated by
using indices, parameters, and variables explained as
follows.
Indices
i = index of order starting from 1 to n
j = index of operation of order i starting from 1 to m
j* = index of the last operation of order i
k = index of machine starting from 1 to s
j' = index of child operations of order i operation j
j" = index of the first operations of order i
q = index of operations on machine starting from 1

to t. For example, there are three operations on
machine 4 (M4), which are O4,3 O3,3 O1,3
(see second column in Table 2), when q = 2, it
refers to the second operation on this machine
(O3,3).

Sets and Parameters
pi,j = processing time of operation i, j (order i operation j)
pi,j,k = processing time of operation i, j (order i operation

j) on machine k
di = due time of order i
CTi = cost per unit of tardiness of order i
CEi = cost per unit of earliness of order i
CFi = cost per unit of flow-time of order i
Qi = quantity of order i
Seqk = set of sequence of operation i, j on machine k.

For example, there are three operations on
machine 4 (M4), which are O4,3 O3,3 O1,3
(see second column in Table 2), so Seq4 = {(4,3),

(3,3), (1,3)}.
CHi,j = set of child operations of operation i, j (index

j). For example, O1,4 consists of O1,2 and O1,3
(see Figure 6), so CH1,4 = {2, 3}.

FOi = set of the first operations of order i. For example,
the first operations of order 4 are O4,1 and O4,2
(see Figure 6), so FO4 = {1, 2}.

Decision Variables
xi,j = start time of operation i, j
xi,j,k = start time of operation i, j on machine k
ci = completion time of order i
ci,j = completion time of operation i, j
fi = flow-time of order i
ei = earliness of order i
ti = tardiness of order i
Z = total cost
Objective function [Equation (2)]

 (2)

Constraints
 Constraint (3) is used to maintain the sequence
of operations on each machine

 (3)

 Constraint (4) is used to maintain the precedence
relationships of operations

 (4)

 Constraints (5) – (11) are used to calculate completion
time, tardiness, earliness, and flow-time

For completion time:

 (5)
 (6)

Table 2: Total cost of a sequence of orders based on permutation and non-permutation schedules
Sequence of Orders

(Oi)
Sequence of Operations (Oi.j)
on Machines (Permutation)

Total Cost
(Permutation)

Sequence of Operations (Oi.j) on
Machines (Non-permutation)

Total Cost
(Non-permutation)

O4 O3 O2 O1

M1: O4,1
M2: O3,1 O2,1 O1,1 O1,2

M3: O4,2 O3,2 O2,2
M4: O4,3 O3,3 O1,3
M5: O4,4 O2,3 O2,4

M6: O4,5 O1,4

$1,522.00

M1: O4,1
M2: O3,1 O2,1 O1,1 O1,2

M3: O4,2 O3,2 O2,2
M4: O1,3 O4,3 O3,3
M5: O4,4 O2,3 O2,4

M6: O4,5 O1,4

$1,325.20

178

W. Songserm et al., “Hybrid Metaheuristics and Linear Programming for Finite Capacity MRP in Multi-Stage Flexible Flow Shop with
Permutation and Non-permutation Scheduling Options.”

For tardiness:

 (7)
 (8)

For earliness:

 (9)
 (10)

For flow-time:

 (11)

Non-negativity constraint [Constraint (12)]

 (12)

 Figures 7 and 8 show the results after applying
the LP model. It can be seen that the total costs
shown in Table 2 are dramatically reduced. This
shows that our LP model is very efficient. Also,
it observes that the total cost obtained from non-
permutation scheduling is slightly better than that
obtained from permutation scheduling. However, it

can be happened in the opposite direction depending
on data sets.

3 Case Studies and Experiments

This section consists of three parts. The first part
deals with the details of case studies. The second
part deals with the experiment for parameters
tuning of GA, SA, TS, and VNS. The final part
is the experiment to evaluate the performance of
the proposed algorithm. They are explained as
follows.

3.1 Details of case studies

Our case studies are derived from three automotive-
part companies. The different characteristics are
summarized in Table 3, whereas the common
characteristics are summarized as follows.

• The production shop is a multi-stage flexible
flow shop

• The planning horizon is one month
• Lot sizing rule is lot-for-lot since it results in

lowest inventory
• No preemptive schedule and overtime

Figure 7: Total cost after applying the LP model (Permutation).

Figure 8: Total cost after applying the LP model (Non-permutation).

On-time Operation Tardy Operation Early Operation

=

=

=

=

Days

O 1,4M 6

M 5

7 8 9 10 11 12 30 31 32 33 34 3521

$28.40

Flow-time cost $83.80

Total cost $592.20

Tardiness cost

Earliness cost

3936 37 38 48 4941 42 43 46 4740 44 45 504 5 6

M 4

M 3

M 2

M 1

1 2 3 25 2613 14 15 16 17 18 19 20

$480.00

O 4,1

27

O 2,1O 3,1 O 1,1 O 1,2

O 3,2O 4,2

O 4,3 O 1,3O 3,3

O 2,2

O 4,4 O 2,3 O 2,4

O 4,5

28 2922 23 24

On-time Operation Tardy Operation Early Operation

=

=

=

=

Days32 33 3423 24 25 26 27 28 29 30 3114 15 16 17 18 19 20 21 225 6 7 8 9 10 11 12 13

M 4 O 4,3 O 3,3O 1,3

Earliness cost $3.20M 3 O 4,2 O 3,2 O 2,2

M 6 O 4,5 O 1,4

M 5 O 4,4 O 2,3 O 2,4

48 49 5035 36 37 38 39 40 41 42 43 44

M 2 O 3,1

45 46 47

Tardiness cost $480.00

Flow-time cost $104.80O 2,1 O 1,1 O 1,2

Total cost $588.00M 1

1 2 3 4

O 4,1

179

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 3, pp. 173–183, 2018

Table 3: Different characteristics of case studies
Characteristics Case 1 Case 2 Case 3

Number of finished products 16 19 18
Total order quantities 1,512 1,735 1,986
Min/Max levels in bill of materials 2/5 3/5 4/6
Number of operations 520 610 690
Number of machines 18 20 20

3.2 Experiments for parameters tuning of GA, SA,
TS, and VNS

The required parameters for GA, SA, TS, and VNS
are summarized in Tables 4 and 5. These parameters
are considered as independent variables for a factorial
experiment. The experiment is conducted with five
replicates for all case studies to obtain the response
variable, which is the total cost before applying the
LP model. The stopping criterion for each run is
120 minutes (set by the planner). Note that data in
Tables 4 and 5 are obtained by a set of screening
experiments beforehand.

Table 4: Parameters for GA
Algorithm ps Crossover pc Mutation pm

GA 5, 10 PMX, PBX 0.6, 0.8
SWAP,

INSERT
0.005,
0.01

ps : population size, pc : crossover probability, pm : mutation probability.

 To obtain the practical solution for the planner,
the best common parameter setting for all case studies
is required rather than seeking the best setting for
an individual case study. To obtain the best common
setting for a given algorithm, the relative percentage
deviation over the best total cost of each case study
(RPD) and the average relative percentage deviation
for all case studies (ARPD) are determined by using
Equations (13) and (14), where SolAlg is the total cost

obtained from each run, SolBest is the minimum total
cost across all runs, v is the index of case study, and V
is the number of case studies. The best common setting
is a setting obtained at the minimum ARPD, since it
guarantees that the total cost from this setting is very
close to its best total cost (near best total cost).

 (13)

 (14)

3.3 Experiments to evaluate the performance of the
proposed algorithm

To evaluate the performance, we compare the total
cost obtained from the proposed algorithm with a
benchmark algorithm (existing FCMRP algorithm by
Wuttipornpun and Yenradee [6]). There are 8 options
available in the proposed algorithm. They all use the
best common settings obtained from section 3.2, and
use the following notations.

GA-P: GA/Permutation
GA-NP: GA/Non-permutation
SA-P: SA/Permutation
SA-NP: SA/Non-permutation
TS-P: TS/Permutation
TS-NP: TS/Non-permutation
VNS-P: VNS/Permutation
VNS-NP: VNS/Non-permutation

 All options in the proposed algorithm are set
as independent variables for a one-way ANOVA
experiment. The response variable is the total cost
after applying the LP model. To determine the
performance improvement of the proposed algorithm,

Table 5: Parameters for TS, SA, and VNS

Algorithm No. of NBH
Sequences NBH Operators TL Size No. of Iterations for

each Temperature
Initial

Temperature Alpha Shaking Operators

TS 10, 15 SWAP, INSERT 30, 40, 50 - - - -
SA 5, 10 SWAP, INSERT - 1, 10 80, 100 0.8, 0.9 -

VNS 70, 90 SWAP and
INSERT - - - - SWAP, INSERT

NBH: Neighborhood, TL: tabu list, Alpha: temperature reduction.

180

W. Songserm et al., “Hybrid Metaheuristics and Linear Programming for Finite Capacity MRP in Multi-Stage Flexible Flow Shop with
Permutation and Non-permutation Scheduling Options.”

the relative percentage improvement over the best total
cost obtained from the benchmark algorithm (RPI) is
calculated using Equation (15), where SolAlg is the total
cost of each algorithm, SolBM is the best total cost from
the benchmark algorithm.

 (15)

4 Results and Discussions

The experiments mentioned in section 3 are run by using
C# language on a Core i5 Processor 2.5 GHz with 4 GB
of RAM desktop computer. The results are analyzed by
using a statistical software called Minitab 17.
 Since we evaluate the proposed algorithm using
three different case studies, the best setting for each
case study is then varied depending on the different
characteristics. Therefore, the best common setting
for all case studies is more practical for the planner.
Tables 6 and 7 show the best common setting of each
algorithm recommended for all case studies. It is a
setting selected from the minimum value of ARPD.
It is also observed that the permutation option and

non-permutation have different parameter settings.

Table 6: Best common parameter settings for GA
Algorithms ps Crossover pc Mutation pm

GA-P 10 PBX 0.6 SWAP 0.005
GA-NP 10 PBX 0.6 INSERT 0.01

ps : population size, pc : crossover probability, pm : mutation probability.

 Table 8 shows the best and near best total costs
obtained from all available options in the proposed
algorithm. Based on RPD, it shows that there is only
a narrow range of 0–3.85% between the near best total
cost and its best total cost. From the ARPD value, it can
be seen that VNS-P and VNS-NP obtain the minimum
deviation of 0.61%, whereas the SA-NP obtains the
maximum deviation of 1.58%. However, the deviations
are very small. This proves that our method to select
the near best total cost works very well.
 Table 9 shows the improved total cost, Relative
Percentage Improvement (RPI), and the rank after
applying the LP model. The rank numbers shown in
this table are obtained from Tukey’s comparison test.
The lower rank means better performance than the
higher rank. It can be seen that the near best total cost in
Table 8 is substantially reduced when applying the LP

Table 7: Best common parameter settings for TS, SA, and VNS

Algorithms No. of NBH
Sequences NBH Operators TL Size No. of Iterations for

each Temperature
Initial

Temperature Alpha Shaking
Operators

TS-P 10 SWAP 30 - - - -
TS-NP 10 SWAP 50 - - - -
SA-P 5 INSERT - 1 100 0.9 -

SA-NP 10 INSERT - 10 80 0.9 -
VNS-P 70 SWAP and INSERT - - - - SWAP

VNS-NP 90 SWAP and INSERT - - - - INSERT
NBH: Neighborhood, TL: tabu list, Alpha: temperature reduction.

Table 8: Best total cost, near best total cost, and RPD before applying the LP

Algorithms
Best Total Cost ($)/Near Best Total Cost ($)/RPDTC Min. ARPD

Case 1 Case 2 Case 3
GA-P 8,203 / 8,275 / 0.88% 13,439 / 13,634 / 1.45% 17,836 / 17,836 / 0.00% 0.78%

GA-NP 8,943 / 9,072 / 1.45% 13,758 / 13,758 / 0.00% 18,501 / 18,760 / 1.40% 0.95%
SA-P 10,082 / 10,082 / 0.00% 15,162 / 15,589 / 2.82% 19,965 / 19,965 / 0.00% 0.94%

SA-NP 8,621 / 8,953 / 3.85% 13,656 / 13,656 / 0.00% 18,572 / 18,738 / 0.89% 1.58%
TS-P 8,247 / 8,277 / 0.36% 13,470 / 13,534 / 0.47% 17,971 / 18,027 / 0.31% 0.38%

TS-NP 8,475 / 8,632 / 1.85% 14,068 / 14,138 / 0.50% 18,451/ 18,525 / 0.42% 0.92%
VNS-P 7,824 / 7,883 / 0.75% 12,688 / 12,825 / 1.08% 16,996 / 16,996 / 0.00% 0.61%

VNS-NP 8,509 / 8,509 / 0.00% 13,945 / 14,201 / 1.84% 18,223 / 18,223 / 0.00% 0.61%

181

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 3, pp. 173–183, 2018

model. This proves that the LP model is very efficient.
It allows some operations to start prior to the release
times from VMRP to reduce the tardiness cost, which
is the main cost in our objective function.
 Based on the RPI value, it is obvious that all
available options in the proposed algorithm significantly
outperform the benchmark algorithm. The improvement
gap over the benchmark algorithm is in a range of
20.03–31.66%. GA-NP offer the highest improvement
of 31.66%, whereas SA-P offers the lowest improvement
of 20.03%. For our problem characteristics, GA, SA,
and TS with non-permutation option outperform the
permutation option, while it happens in the opposite
direction for VNS.
 Comparing the required runtimes between the
proposed algorithm and the benchmark algorithm,
which are 120 and 10 minutes, respectively, the
proposed algorithm requires substantially longer
runtime than the benchmark algorithm. However,
the total cost obtained from the proposed algorithm
is dramatically lower than that obtained from the
benchmark algorithm. Therefore, it is worth for the
planner to wait slightly longer.

5 Conclusions

This paper presents a new algorithm for the FCMRP
problem in automotive multi-stage flexible flow shop.
It is a hybrid of metaheuristic algorithms (GA, SA,
TS, and VNS) and linear programming model. The
objective is to improve the solution obtained from the
existing FCMRP algorithm done by Wuttipornpun
and Yenradee [6] and also offer a practical alternative

method for the planner. There are two main steps in
the proposed algorithm. In the first step, the efficient
sequence of orders is determined by the proposed
metaheuristic algorithms. After obtaining the sequence
of orders, the required operations of these orders are
scheduled to the less tardiness machines by using
the forward heuristic with permutation and non-
permutation scheduling options. In the second step,
the start times of the required operations are optimally
determined using the LP model to minimize the total
cost, which is the sum of tardiness, earliness, and
flow-time costs.
 There are 8 options available in the proposed
algorithm. They are controlled by the parameters
of metaheuristic algorithms. Since we evaluate the
proposed algorithm by different case studies, the
best parameter setting for each case study may be set
differently. To offer a practical setting for the planner,
the best common setting for all case studies is required
rather than the best setting for an individual case.
Based on the best common setting, it offers a solution
which slightly deviates from its best solution in a
deviation range of 0–3.85%.
 For the effectiveness perspective, all options in
the proposed algorithm significantly outperform the
existing algorithm for all case studies. GA-NP offers
the best improvement of 31.66%. Based on the different
characteristics of case studies, we can conclude that the
proposed algorithm can be applied to various industrial
situations. Although the proposed algorithm requires a
significant longer runtime than the existing algorithm,
it is worth for the planner to wait since the solution
quality of the proposed algorithm is much better.

Table 9: Total costs after applying the LP model

Algorithms
Total Cost ($)/RPI/Ranking

Average
Case 1 Case 2 Case 3

Existing FCMRP [6] 9,424 (Benchmark) 16,016 (Benchmark) 19,280 (Benchmark) 14,906.58 (Benchmark)

GA-P 7,300 / 22.54% / 4 11,960 / 25.33% / 4 13,707 / 28.91% / 6 10,988.99 / 25.59% / 3

GA-NP 7,016 / 25.55% / 3 10,265 / 35.91% / 1 12,814 / 33.54% / 1 10,031.70 / 31.66% / 1

SA-P 8,305 / 11.87% / 6 12,770 / 20.27% / 6 13,894 / 27.94% / 4 11,656.33 / 20.03% / 4

SA-NP 7,056 / 25.13% / 3 10,489 / 34.51% / 2 13,787 / 28.49% / 6 10,444.25 / 29.94% / 2

TS-P 7,540 / 19.99% / 5 12,480 / 22.07% / 4 14,116 / 26.79% / 5 11,378.91 / 22.95% / 3

TS-NP 7,057 / 25.12% / 3 12,155 / 24.10% / 5 13,681 / 29.04% / 3 10,964.69 / 26.44% / 3

VNS-P 6,629 / 29.66% / 1 11,476 / 28.35% / 3 13,583 / 29.55% / 3 10,562.67 / 29.18% / 2

VNS-NP 6,845 / 27.37% / 2 11,961 / 25.32% / 4 13,183 / 31.62% / 2 10,663.34 / 28.47% / 2

182

W. Songserm et al., “Hybrid Metaheuristics and Linear Programming for Finite Capacity MRP in Multi-Stage Flexible Flow Shop with
Permutation and Non-permutation Scheduling Options.”

 There are some interesting research gaps for
future investigations. The lot sizing policy is only lot-
for-lot. Other lot-sizing techniques should be studied.
Since it is especially designed for the flexible flow shop,
the performance of the proposed algorithm in other
manufacturing shops such as job shop, open shop
should be investigated. The production overtime and
order preemption are also of interest because they can
significantly reduce the total cost. Therefore, a new
algorithm should be developed to address these problems.

Acknowledgments

This research has been supported by Faculty of
Engineering, King Mongkut’s University of Technology
North Bangkok.

References

[1] P. B. Nagendra and S. K. Das, “Finite capacity
scheduling method for MRP with lot size
restrictions,” International Journal of Production
Research, vol. 39, pp. 1603–1623, 2001.

[2] A. M. Örnek and O. Cengiz, “Capacitated lot
sizing with alternative routings and overtime
decisions,” International Journal of Production
Research, vol. 44, no. 24, pp. 5363–5389, 2006.

[3] C. Öztürk and A. M. Örnek, “A MIP based
heuristic for capacitated MRP systems,” Computers
& Industrial Engineering, vol. 63, no. 4, pp. 926–
942, 2012.

[4] N. A. Bakke and R. Hellberg, “The challenges
of capacity planning,” International Journal of
Production Economics, vol. 30–31, no. 1, pp. 243–
264, 1993.

[5] S-H. Lee, S. Trimi, D. Choi, and J. S. Rha,
“A comparative study of proprietary ERP and
open source ERP modules on the value chain,”
International Journal of Information and Decision
Sciences, vol. 3, no. 1, pp. 26–38, 2011.

[6] T. Wuttipornpun and P. Yenradee, “Finite capacity
material requirement planning system for
assembly flow shop with alternative work
centres,” International Journal of Industrial &
Systems Engineering, vol. 18, no. 1, pp. 95–124,
2014.

[7] J. C. Chen, C-C. Wu, C-W. Chen, and K-H.
Chen, “Flexible job shop scheduling with parallel

machines using genetic algorithm and grouping
genetic algorithm,” Expert Systems with
Applications, vol. 39, pp. 10016–10021, 2012.

[8] S. Wang and M. Liu, “A genetic algorithm for
two-stage no-wait hybrid flow shop scheduling
problem,” Computers & Operations Research,
vol. 40, no. 4, pp. 1064–1075, 2013.

[9] H. F. Rahman, R. Sarker, and D. Essam, “A
genetic algorithm for permutation flow shop
scheduling under make to stock production
system,” Computers & Industrial Engineering,
vol. 90, no. 1, pp. 12–24, 2015.

[10] I-H. Kuo, S-J. Horng, T-W. Kao, T-L. Lin, C-L. Lee,
T. Terano, and Y. Pan, “An efficient flow-shop
scheduling algorithm based on a hybrid particle
swarm optimization model,” Expert Systems with
Applications, vol. 36, pp. 7027–7032, 2009.

[11] D. Tang, M. Dai, M. A. Salido, and A. Giret,
“Energy-efficient dynamic scheduling for a
flexible flow shop using an improved particle
swarm optimization,” Computers in Industry,
vol. 81, pp. 82–95, 2016.

[12] M. Eddaly, B. Jarboui, and P. Siarry, “Combinatorial
particle swarm optimization for solving blocking
flowshop scheduling problem,” Journal of
Computational Design and Engineering, vol. 3
no. 4, pp. 295–311, 2016.

[13] B. Yagmahan and M. M. Yenisey, “A multi-
objective ant colony system algorithm for flow
shop scheduling problem,” Expert Systems with
Applications, vol. 37, pp. 1361–1368, 2010.

[14] F. Ahmadizar, “A new ant colony algorithm for
makespan minimization in permutation flow
shops,” Computers & Industrial Engineering,
vol. 63, no. 2, pp. 355–361, 2012.

[15] Z. Zhang and Z. Jing, “An improved ant colony
optimization algorithm for permutation flow shop
scheduling to minimize makespan,” in Proceedings
13th International Conference on Parallel
and Distributed Computing, Applications and
Technologies, 2012, pp. 605–609.

[16] M. K. Marichelvam, T. Prabaharan, and X. S. Yang,
“Improved cuckoo search algorithm for hybrid
flow shop scheduling problems to minimize
makespan,” Applied Soft Computing, vol. 19,
pp. 93–101, 2014.

[17] P. Dasgupta and S. Das, “A discrete inter-species
cuckoo search for flowshop scheduling problems,”

183

KMUTNB Int J Appl Sci Technol, Vol. 11, No. 3, pp. 173–183, 2018

Computers & Operations Research, vol. 60,
pp. 111–120, 2015.

[18] G. M. Komaki, E. Teymourian, V. Kayvanfar,
and Z. Booyavi, “Improved discrete cuckoo
optimization algorithm for the three-stage assembly
flowshop scheduling problem,” Computers &
Industrial Engineering, vol. 105, pp. 158–173, 2017.

[19] J. Grabowski and J. Pempera, “The permutation
flow shop problem with blocking: A tabu search
approach,” International Journal of Management
Science, vol. 35, no. 3, pp. 302–311, 2007.

[20] J-S. Chen, J. C-H. Pan, and C-K. Wu, “Hybrid
tabu search for re-entrant permutation flow-
shop scheduling problem,” Expert Systems with
Applications, vol. 34, no. 3, pp. 1924–1930,
2008.

[21] L-M. Liao and C-J. Huang, “Tabu search heuristic
for two-machine flowshop with batch processing
machines,” Computers & Industrial Engineering,
vol. 60, no. 3, pp. 426–432, 2011.

[22] W. Bozejko, J. Pempera, and C. Smutnicki,
“Parallel tabu search algorithm for the hybrid
flow shop problem,” Computers & Industrial
Engineering, vol. 65, no. 3, pp. 466–474, 2013.

[23] Q-K. Pan and R. Ruiz, “Local search methods for
the flowshop scheduling problem with flowtime
minimization,” European Journal of Operational
Research, vol. 222, no. 1 pp. 31–43, 2012.

[24] X. Dong, P. Chen, H. Huang, and M. Nowak, “A
multi-restart iterated local search algorithm for
the permutation flow shop problem minimizing
total flow time,” Computers & Operations Research,
vol. 40, no. 2, pp. 627-632, 2013.

[25] Y. Wang, X. Dong, P. Chen, and Y. Lin, “Iterated
local search algorithms for the sequence-dependent
setup times flow shop scheduling problem
minimizing makespan,” Foundation of Intelligent
Systems, vol. 277, pp. 329–338, 2014.

[26] J. Xua, C-C. Wub, Y. Yinc, and W-C. Lin, “An
iterated local search for the multi-objective
permutation flowshop scheduling problem with

sequence-dependent setup times,” Applied Soft
Computing, vol. 52, pp. 39–47, 2017.

[27] W. E. Costa, M. C. Goldbarg, and E. G. Goldbarg,
“Expert systems with applications,” Applied Soft
Computing, vol. 39, no. 9, pp. 8149–8161, 2012.

[28] R. M. Hallah, “Minimizing total earliness and
tardiness on a permutation flow shop using VNS
and MIP,” Computers & Industrial Engineering,
vol. 75, pp. 142–156, 2014.

[29] D. Lei, “Variable neighborhood search for two-
agent flow shop scheduling problem,” Computers
& Industrial Engineering, vol. 80, pp. 125–131,
2015.

[30] A. P. Rifai, H-T. Nguyen, and S. Z. M. Dawal,
“Multi-objective adaptive large neighborhood
search for distributed reentrant permutation flow
shop scheduling” Applied Soft Computing, vol. 40,
pp. 42–57, 2016.

[31] C. Low, “Simulated annealing heuristic for flow
shop scheduling problems with unrelated parallel
machines,” Computers & Operations Research,
vol. 32, no. 8, pp. 2013–2025, 2005.

[32] B. Naderi, R. T. Moghaddam, and M. Khalili,
“Electromagnetism-like mechanism and simulated
annealing algorithms for flowshop scheduling
problems minimizing the total weighted tardiness
and makespan,” Knowledge-Based Systems, vol. 23,
no. 2, pp. 77–85, 2010.

[33] P. Jarosław, S. Czeslaw, and Z. Domonik,
“Optimizing bicriteria flow shop scheduling
problem by simulated annealing algorithm,”
Procedia Computer Science, vol. 18, pp. 936–945,
2013.

[34] F. Nikzad, J. Rezaeian, I. Mahdavi, and I. Rastgar,
“Scheduling of multi-component products in
a two-stage flexible flow shop,” Applied Soft
Computing, vol. 32, pp. 132–143, 2015.

[35] F. W. Glover and G. A. Kochenberger, Handbook
of Metaheuristics. New York: Springer, 2003.

[36] M. Gendreau and J.-Y. Potvin, Handbook of
Metaheuristics. 2nd ed., New York: Springer, 2010.

