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Abstract 

The authors have proposed a novel surface recognition algorithm capable of determining contact surfaces 

types by means of tactile sensor fusion since 2008. With Quadric surface representing; the limiting procedures 

which relate various degenerate Cartesian coordinate systems play a crucial result in the classification of all 

such systems. In this paper, the renew recognition processes are described. The space transformations are 

technically reducing the complicated contact surface for classification refinement. The complete classification 

of these modifiable coordinate systems is provided by means of the corresponding space curvature. 

Information is obtained directly at the interface between the object and the sensing device and relates to three-

dimensional. The technique called “eigenvalue trajectory analysis”, is introduced after and adopted for 

specifying the margin of classification. The authors demonstrate mathematically approach which offers 

significant computational advantages such as dynamic recognition of contact deformations. 
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1  Introduction 

The technique called “eigenvalue trajectory 

analysis”, is introduced for the contact recognitions 

and adopted for specifying the margin of 

classification [1]. The smallest component of an 

eigenvalue can be used to estimate and identify 

object shapes without using any other references, 

whereas classification is used as the principal 

indication of surface identity. The shape reflectance 

parameter unique to each surface may be recovered 

and identified. It has been shown that the reliability 

of the surface classification method and the accuracy 

of transformation are dependent of object shapes. 

The quadric surfaces used still have a limited number 

of possibilities which can be accurately represented. 

The five non-singular quadrics are the ellipsoid, 

elliptic paraboloid, hyperbolic paraboloid, 

hyperboloid of one sheet, and hyperboloid of two 

sheets. The singular quadrics include cones, 

cylinders, swept hyperbolas and parabolas and the 

degenerates: planes. To improve classification the 

surface properties must be modified. One option is to 

parameterize the Quadric surface in higher space and 

obtain the higher surface discrimination while 

preserving the eigenvalue trajectory behavior. The 

authors also introduced the method to improve the 

classification performances with multivariate 

regression and perturbation on singular value 

decomposition [2].  There exist various tactile 

sensors for robotic application.  The basics of each 

tactile sensor is when it comes into contact with an 

object and examine what information the sensor can 

provide relating to the objects characteristics. The 

end product will be a sophisticated property map 

interpreting the different characteristics of target 

objects by fusing tactile data. 
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Tactile arrays can recognize surface types on contact, 

making it possible for a tactile system to recognize 

translation, rotation, and scaling an object 

independently. The type of contact surfaces obtained 

by the tactile system will be determined from the 

shape of the object image which can then be 

characterized using the mathematical properties of 

contact point. Figure 1 shows an example of resistive 

tactile sensor for one side of the robot gripper. The 

tactile sensors have been developed with the 

following specifications: One finger consists of two 

16x4 cells, two 16x2 cells, and one 6x2 cells, making 

up the total 204 cells for the a fingers.  With resistive 

tactile sensor, changes in electrical resistance are 

detected by a tactile sensor made from electrically 

conductive foam. The electrical resistance measured 

between two electrodes on the same side of the 

conductive foam (one tactile element) is derived from 

electrical conductivity through a number of 

simultaneously conducting paths. Resistive tactile 

sensor with excellent sensitive property for robot 

prehension can be referred to Petchartee and 

Monkman works [3]. 

 

 

Figure 1: Sensor Components 

 

2    Surface Fitting and Margin of Classification 

2.1 Surface Fitting 

The shape representation designed for this study is 

both rotation and translation invariant. The Quadric 

surface seems to be a simple, yet adequate, method 

for the proposed tactile sensor as the dimension of 

the tactile array (16x4) cannot represent a complex 

object surface. The basic way of creating Quadric 

surfaces uses least squares interpolation. Considering 

a general 3-D surface expressed in the contact point 

as 0),,( zyxf , the general surface function can 

bapproximated locally at the contact point as the 

following second order polynomial equation: 

 

0222222222  kjzhygxfxzeyzdxyczbyax  (1)  

  

Equation (1) can be rewritten in a quadratic form of 

matrix equation: 0.. PQPT , where 
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The properties of surfaces represented by Q  can be 

translated, rotated, projected and scaled. Given a 4 x 

4 transformation matrix M  of the form developed, 

the transformed Quadric surface *Q  is: 

 
11* ..)(  MQMQ T                      (2) 

 

The general transformation matrices ( M ) are of the 

Denavit-Hartenberg type combining translation, 

rotation, scaling and projection.  The least-square 

problem arises when the polynomial is being fit at 

some data points )},{( ii yx , i = 1 , . . . , m , where 

m  is greater than or equal to the number of unknown 

variables. A further generalization of the linear least-

square problem is to take a linear combination of 

basic functions )},(),...,,(),,({ 2211 mm yxfyxfyxf . 

Firstly, the c , e , f  and j  variables of Q  are set to 

zero to get an explicit form as (3):  

 

 khygxdxybyaxyxfz  222),( 22             (3) 

 

z  or ),( yxf represents the tactile data of the tactile 

elements at the location ),( yx . Then, the problem of 

fitting this polynomial can be initiated. In the matrix 

form ZAc  , A  is a square matrix, the unknown c  is 

a column vector, and Z  is also a column vector. The 

least-squares problem becomes:
2

min Acz  . A 

solution of the least-squares problem is the solution 

c  to the linear system: zAAcA TT  , that is known as 

a normal equation. The solution of the least-squares 
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problem is obtained by analyzing the singular value 

decomposition (SVD) of A .  

The quadric surfaces used still have a limited number 

of possibilities which can be accurately represented. 

The five non-singular quadrics are the ellipsoid, 

elliptic paraboloid, hyperbolic paraboloid, 

hyperboloid of one sheet, and hyperboloid of two 

sheets. The singular quadrics include cones, 

cylinders, swept hyperbolas and parabolas and the 

degenerates: planes. To improve classification the 

surface properties must be modified.  

 

2.2 Margin of Classification 

The eigenvalue represents the matrix properties of 

the Quadric surface of object prototypes calculable 

from the eigenvalue trajectory of the object types. 

Four shapes of object have been used to test the 

robot’s ability in recognizing object types. The robot 

makes contact with these objects, and the data from 

the tactile sensor is stored and analyzed. Later, one of 

the four objects is grasped again but with different 

magnitudes of force and in different positions and 

rotations. The ability to distinguish between object 

types is calculated. The tested objects are an oval 

object with two major axes of 14 mm and 11.7 mm, a 

cylindrical object with 6.0 mm in diameter and 20 

mm in length, a cube with dimensions 10 x 15.9 x 10 

mm and a ball with a diameter of 9.5 mm 

respectively.  

This experiment applies graphical techniques to 

study the behavior of eigenvalues after the matrix 

elements change. This change normally requires 

numerical analysis and perturbation theory, but the 

technique called “eigenvalue trajectory analysis”, 

illustrated in Figure 2, is more applicable and will be 

adopted. This graph shows the smallest eigenvalue of 

the covariance matrix of the Quadric surface property 

( Q ) independent of translations in all two axes 

(along x-axis, along y-axis), of rotations around any 

axis (around x-axis, around y-axis, around z-axis), 

and of scalable values. After the trajectory of the 

eigenvalue is derived, it can be used to classify to the 

contact surface of object by matching the level of 

eigenvalue of surface property matrix belonging to 

the object prototype. 

 

Figure 2:  Eigenvalue trajectories, for different 

objects, derived from Quadric parameters. 

 

Trajectory graph derived from the pseudo-codes 

show below;  

Algorithm 1. Contact-Trajectories ( ),( 44 NDNT ) 

1.   Initialization: 

2.   while NObjnum   

3.    for MaxScalingscalestepscale  ;1.0;1  

4.    for 2;1.0;2  tranXYsteptranXY  

5.    for  2;8/;0  scalesteprotXYZ  

6.   ),,),(()( rotXYZtranXYscaleObjnumDMinEigenitraject   

7.   end for 

8.   end for 

9.   end for 

10. end while 

11. DrawLineGraph(traject, MaxLoopNumber) 

 

The Variable i  represents a LoopNumber or an 

index of traject  variabe that constrains an 

eigenvalue at a specified transformation condition. 

Eigenvalues have no unit where is considered an 

arbitrary unit.  At this point, we do not aim to prove 

again that the smallest eigenvalue can facilitate 

contact recognition, but the proof can be obtained 

elsewhere [1-2]. The conclusions of those proofs 

confirm that the smallest eigenvalue of the Quadric 

parameter is identical with the Quadric parameter 

itself. This means the smallest eigenvalue of the 

Quadric parameter yields identical characteristic to 
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the Quadric shape. Consequently, it is reasonable to 

use the smallest eigenvalue to classify the contact 

surfaces. Every symmetric matrix has this property, 

including its covariance which is also a symmetrical 

matrix.  General algorithms for finding eigenvectors 

and eigenvalues are usually iterative method, but 

only a few iterative methods can provide round-off 

errors small enough to be useful for our purposes. 

Powerful methods such as the QR algorithm used in 

the LaPACK library (Linear Algebra Software 

Package), have good classification ability since a 

precise resolution within the order of 10
-3

 is possible 

with very small round-off errors.   

The noise level is kept below 8% it will not be 

statistically meaningful for, nor affect, classification. 

By experimenting, it is also clear that classification 

capability reduces if the random noise peaks are 

greater than 8% of the ADC’s maximum value. 

Invalid classification was tested by increasing noise 

to a level higher than 8%, and consequentially, the 

crossing levels of eigenvalue trajectory appear. The 

use of the boundary alignments on the trajectory 

reduces the effect of noise on the eigenvalue 

trajectory, and such a filtration must be performed 

after trajectory was evaluated. 

3 Previously Proposed Boundary Alignments 

3.1 Multivariate regression   

To improve the classification performance, the 

authors have experimented with the SVD mechanics 

analogous to the eigenvalue/eigenvector mechanics. 

The matrix Q  can be decomposed to TVUQ  , where 

U and V are a set of column and row eigenvectors 

respectively, and   is a matrix of singular values 

(eigenvalues) of TQQ or QQT . The matrix   is also a 

quasi-diagonal matrix with its eigenvalues along the 

diagonal in descending order: 04321   .  If 

we introduce an additional arbitrary matrix into the 

initial Quadric properties, then the results 

are  )( TVUQ


. For the different tested objects, 

we have differences in terms of   and . The 

smallest eigenvalue of the matrix Q  can be aligned 

as jjj
e 44 


, where je  are alignment distances and 

j  the numbering of the objects. However, V  and  U  

for the same object are not identical under the 

generation of a trajectory. After the eigenvalue 

trajectory is generated, a list of  j  and j  is 

produced.  Then the general term of  
~

 can be 

approximated by   W
~

. By substitution j  and 

j  into that equation, the variable   can be 

obtained by using multivariate regression. In the 

classification process, the quadric parameter Q  will 

be modified by  )( TVUQ


 before the smallest 

eigenvalue is recalculated. The procedures above aim 

to align the smallest eigenvalue, in which we expect 

to obtain the better classification boundary. Although 

objects 1, 2 and 3 are uniquely classified, there exists 

a slight danger of misclassification in the case of 

objects 2 and 4 as can be seen from figure 3. 

According to figure 3, the thresholds of object1, 

object2, object3, and object4 correspond with 

different shapes of objects. Each object has a 

different eigenvalue in the eigenvalue trajectory with 

no particular increasing or decreasing order in terms 

of their levels. At this point, we are trying to enhance 

the level of the trajectory of object4. After doing 

such alighment, the unexpected results are the result 

of unexpectedly improved classification results as in 

figure 3. 

 

Figure 3: Boundary alignments with multivariate 

regression 

 

3.2 Perturbation of SVD  

The authors also introduced the method to improve 

the classification performances with forth-order 

perturbation of SVD. Based on the research work of 

Zhenhua (1997), the direct perturbation method of 

SVD with a numerical example to demonstrate the 

effectiveness was proposed. He advanced the second-
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order perturbation reanalysis. With our problems, we 

need forth-order perturbation for boundary 

alignment. Then, more proofs in Mathematics are 

required for further work.  The SVD of a matrix j
Q0

 

is known as jjjj
VUQ

0000
 , where 
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j
rj  and 

),,,(
040302010
jjjjj

r diag  . A further assumption is that 

another matrix j
TQ may be derived form j

Q
0

by a 

perturbational modification; p
jj

T QQQ 
0

, where pQ  

is the perturbation matrix which is expected to be the 

common unknown alignment matrix. We concentrate 

our attention on forcing only the smallest eigenvalues 

of 4321 ,,, TTTT QQQQ to be changed by 

4321 ,,, eeee respectively. By using the perturbational 

analysis method proposed by Zhenhua, we can 

reanalyse and introduce the general terms for the 

eigenvalue of j
TQ as: 

2/))((
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.  (4) 

The terms iiiiiiii vvvvuuuu 32103210 ,,,,,,,  could also be 

obtained using the basic idea of Zhenhua and our 

derivation in [4]. The calculation of  

iiiiiiii vvvvuuuu 32103210 ,,,,,,,  are based on the contents of 

21,QQ 43,, QQ .  The subscript i is set to four for the 

smallest eigenvalue and to 1 for the largest. The new 

aligned smallest eigenvalues 4
4

3
4

2
4

1
4 ,,,  are 

substituted by alignment values from the previously 

given expression jjj
e

44



.  
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Finally, the problem become a linear system of the 

form bAx  with four equations and sixteen unknown 

variables (the elements of pQ ). However, according 

to the properties of a symmetric matrix, the number 

of unknown variables can be reduced to ten. The 4 by 

10 A  matrix contains alignment coefficients. The 

unknown, x  is a 10 by 1 column vector taken from 

pQ . b  is a 4 by 1 column vector of aligned 

eigenvalues. The solution to this problem can be 

solved by simple inversion: bAx 1 . This is an 

underdetermined linear system which involves more 

unknowns than equations. The solution to such 

underdetermined systems is not unique. The system 

is underdetermined and A  is not invertible, but the 

pseudoinverse, 1)(   TT AAAA , can be used to obtain 

the least-squares solution of bAx  . Figure 4 

presents the final results of the changing of smallest 

eigenvalues using perturbation of SVD. Using this 

technique, we still face the limits of SVD 

perturbation bounds [5] and the effect of singular 

values to the singular subspace when applied to large 

alignments. 

 

 
Figure 4: Boundary alignments with perturbation of 

SVD 
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4 The Space Curvature Techniques   

One option is to parameterize the Quadric surface in 

higher space and obtain the higher surface 

discrimination while preserving the eigenvalue 

trajectory behavior. There remains the possibility that 

their discrimination of object shape is based on 

differences in surface curvature at the contact point. 

A hypersurface is an n-dimensional manifold 

embedded in an n+1 dimensional space.  

 For our case, consider a two-dimensional surface 

embedded in three-dimensional space, where the 

surface consists of the locus of points satisfying an 

equation of the form f(x,y,z) =0. For hypersurfaces of 

higher dimension we can proceed in exactly the same 

way. 

It is called a quadric surface if the surface is the 

equation of second degree in three-dimensional 

Cartesian Coordinates. However, quadric surfaces are 

multi-dimensional spaces defined by coordinates 

 Dxxx ..10 , where the general quadric is 

defined by the algebraic equation, 
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, in which Q  is a ( +1)- 

dimensional matrix, P is a ( +1)-dimensional 

vector and k  a constant. For example, if a Quadric 

parameter is projected into a higher coordinate 

system, then the parameters  Q  and P  will be: 
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The curvature of an n-1 dimensional embedded in n-

dimensional space as defined by the function 

0,...),,,( wzyxf is given by    

2/)1()(

)ˆ,(





nAtrace

BA
            (6), 

where A and B  are off-diagonal entries and 

diagonal entries of the matrix [6]. We 

define ijji
ji

ji
bABA ,

)(

,
)1()ˆ,(  where ijb denote 

the minor of jiB , . For this case, at any point on a 

three-dimensional hypersurface we can construct 

orthogonal coordinates zyxw ,,,  such that the xyz  

hyperplane is tangent to the surface and the w  axis is 

normal to the surface at that point.  

The surface curvatures are going to decrease on the 

higher dimensional space by a function of the 

diagonal entries. For example, the curvature of an (n-

1)-dimensional sphere of radius r  embedded in n-

dimensional space will be reduced by a factor of 
)1(/1 nr .   

We do not aim to prove that how other  shapes 

decreased in surface curvature in n-dimensional 

space. The conclusions still confirm that the smallest 

eigenvalue of the Quadric parameter is identical with 

the Quadric parameter itself. In conclusion, Q  is 

still the symmetrical matrix and the smallest 

eigenvalue used for classification will be 5 . 

321 ,, www and 4w are the lists of parameters which 

must be found in order to project onto a higher 

dimensional space.   

To decrease the surface curvature, the procedures 

above aim to align the smallest eigenvalue, In which 

we expect to obtain the better classification 

boundary. 

 

5 Conclusions 

This paper explains the authors’ instruction for 

aligning eigenvalue trajectories. To reduce the 

complicated contact surface for classification and 

expand the windows of margin in classify process. 
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