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Abstract 

Stock market behavior is inherently volatile and sensitive to external influences, making effective monitoring 

tools essential for detecting shifts in financial time series. This study proposes a Double Modified Exponentially 

Weighted Moving Average (DMEWMA) control chart designed to improve the detection of small mean shifts 

in autocorrelated stock data modeled by Integrated Moving Average (IMA) and Fractionally Integrated Moving 

Average (FIMA) processes with exponential white noise. The Average Run Length (ARL) performance of the 

proposed chart is analytically derived using both an exact formula based on Fredholm integral equations and a 

Numerical Integral Equation (NIE) technique. The simulations confirm the accuracy of the analytical results. 

Comparative analysis demonstrates that the DMEWMA chart outperforms the Modified EWMA (MEWMA) 

chart across various shift magnitudes, exhibiting lower ARL₁, Relative Median Index (RMI), and Average 

Expected Quadratic Loss (AEQL) values. Real-world applications using Thai stock data further validate the 

practical utility of the proposed method, highlighting its superior sensitivity in detecting subtle process changes. 

 

Keywords: Double modified EWMA control chart, Explicit formula, Fractionally integrated moving average, 

Integrated moving average, Numerical integral equations 

 

1 Introduction 

 

Statistical process control (SPC) is a fundamental 

method for monitoring and improving the quality and 

stability of processes across industries. The control 

chart, established by Shewhart [1], is one of the most 

extensively used tools in SPC. Control charts are 

critical for distinguishing between common cause 

variations, which are inherent in a process, and special 

cause variations, which indicate the presence of an 

assignable element that requires corrective action [2]. 

By continuously analyzing process data, control charts 

allow organizations to detect variations early, 

minimize defects, and ensure consistent product 

quality [3]. The two main types of control charts are 

attribute control charts and variable control charts.  

For continuous data like temperature, weight, or 

pressure, variable control charts like the X̄-R, X̄-S, and 

exponentially weighted moving average (EWMA) 

charts are utilized [2]. On the other hand, attribute 

control charts, such as the p-chart, np-chart, c-chart, 

and u-chart, are used to represent categorical data, 

including the percentage of non-conforming products 

or the quantity of defective items in a batch [4].  The 

type of data being evaluated and the process's 

characteristics determine which control chart is best. 

Control chart implementation is essential for 

improving operational efficiency and guaranteeing 

process stability.  In order to make data-driven 

decisions that lower variability and boost 

performance, organizations use these charts to spot 

trends, changes, and out-of-control situations [2].  

The concept of control charts for monitoring 

process stability was first introduced by Shewhart [1], 

laying the groundwork for modern statistical process 

control techniques. While the Shewhart control chart 

remains effective for detecting large shifts in process 

behavior, its reliance on the most recent observation 
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limits its ability to identify smaller, more subtle 

deviations [2]. To address this limitation, memory-

based control charts, such as the cumulative sum 

(CUSUM) [5] and exponentially weighted moving 

average (EWMA) charts [6], were developed. By 

incorporating historical data, these charts enhance the 

sensitivity to small-to-moderate shifts in process 

parameters, providing a more comprehensive 

approach to process monitoring [7]. Despite their 

effectiveness, traditional EWMA charts may still 

exhibit limitations in responsiveness to subtle process 

variations. To enhance performance, the Modified 

Exponentially Weighted Moving Average (MEWMA) 

and the Double Modified Exponentially Weighted 

Moving Average (DMEWMA) control charts have 

been introduced. The MEWMA chart [8] improves 

upon the classical EWMA by adjusting the smoothing 

parameter to better adapt to different types of shifts. 

The DMEWMA control chart, on the other hand, 

further extends the EWMA framework by 

incorporating an additional smoothing parameter. The 

key difference is that the DMEWMA chart applies two 

levels of exponential smoothing, allowing it to 

respond more effectively to subtle process variations 

[9]. These modifications make both MEWMA and 

DMEWMA more sensitive to subtle changes in 

process behavior compared to traditional EWMA 

charts. In addition to DMEWMA, other advanced 

monitoring techniques, such as the generalized 

likelihood ratio (GLR) and adaptive EWMA charts, 

have been developed to further refine statistical 

process control in various applications [10].  

The assumption that observations are 

independent and identically distributed (i.i.d.) is a 

major restriction of memory-based control charts, as it 

may not always be valid in real applications. In many 

manufacturing processes and other domains, 

observations might show autocorrelation, which 

occurs when the current data point is associated with 

previous observations [2]. Autocorrelation in data has 

been extensively studied using various time series 

models, including autoregressive (AR), moving 

average (MA), autoregressive moving average 

(ARMA), autoregressive integrated moving average 

(ARIMA), autoregressive fractionally integrated 

moving average (ARFIMA) models, which are 

commonly used to model time-dependent processes 

[11].  

The average run length (ARL) is an important 

metric for evaluating control chart performance since 

it represents the average number of observations 

required to identify a signal (showing a process shift) 

[2].  The ARL evaluates the sensitivity of a control 

chart, with a shorter ARL indicating faster shift 

detection.  There are two main approaches for 

estimating the ARL: Monte Carlo simulation and 

numerical integral equation (NIE). To determine the 

frequency of a signal and replicate the process, a 

Monte Carlo simulation generates random samples.  It 

is frequently used to assess autocorrelated data and 

intricate control charts [12]. However, NIE is 

computationally more efficient and models the 

process distribution by solving integral equations, 

particularly when large amounts of data or analytical 

solutions are needed [13]. Both approaches are useful 

resources for examining the performance of control 

charts, and each has benefits based on the processing 

demands and data complexity. An explicit formula for 

the exact ARL can be derived from certain types of 

control charts, particularly when the distribution of the 

control statistic is known under both in-control and 

out-of-control scenarios. As the determination of ARL 

for MA processes has been extensively studied [14]–

[17], including its application to the DMEWMA 

control chart [18], this study extends the analysis of 

the DMEWMA chart to IMA and FIMA processes. 

These processes have previously been examined in the 

context of the MEWMA control chart [19], and their 

integration into the DMEWMA framework aims to 

enhance process monitoring capabilities in more 

complex time-series environments. The primary goal 

of this research is to propose an exact formula for 

detecting shifts in the mean of IMA and FIMA 

processes with exponential white noise, using 

analytical integral equations (IE) within the context of 

the DMEWMA control chart. 

 

2 Materials and Methods 

 

2.1 Statistical methods 

 

2.1.1 Double modified EWMA control chart, DMEWMA 

 

Let 
t

Z  be the sequence of a generalized long-memory 

process with exponential white noise. The Double 

Moving Exponentially Weighted Moving Average 

control chart is an advanced statistical process 

monitoring tool used to detect small shifts in a process 

mean or variance over time. It is an extension of the 

Modified Exponentially Weighted Moving Average 

(MEWMA) control chart, incorporating a second level 

of smoothing to enhance sensitivity to small process 
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changes. The DMEWMA statistic is defined by 

Equation (1): 

 
            2 2 1 1 1

2 1 2 2 11t t t t tZ Z Z Z Z                  (1) 

 

where 
       1 1

1 1 1 1 11t t t t tZ Z X X X         is 

the MEWMA statistic, tX  is the process, 1 2,   are 

the smoothing parameter satisfying  1 2, 0,1 .    In 

general, the smoothing constant close to one is ideal 

for detecting large shifts, while a smaller 

 1 2, 0.05,0.25    value is recommended for 

detecting small shifts [20], 1 2,   are constants. The 

initial values of 
   
0 0

2 1

0 .Z Z X     The lower 

control limit (LCL) and upper control limit (UCL) of 

the DMEWMA control chart can be calculated as 

follows: 

control limit = 

2

2

,

,

Z

Z

L LCL

L UCL

  

  

 




 

where   and   are average and standard deviation 

of the process, L  is the coefficient of the control limit, 

and 
2

Z  is the variance of the control chart.  

The practical success of a DMEWMA chart in 

monitoring real-world processes depends heavily on 

the appropriate choice of its smoothing parameters. 

These parameters—denoted as 1  and 2 —control 

the weight applied to past data in the two-stage 

exponential averaging structure. Their selection 

should align with the magnitude of shifts the chart is 

expected to detect:  

Small shifts (≤ 0.2σ): Lower values of ,  such 

as 1 20.05, 0.1,    improve sensitivity by giving 

more weight to recent data. 

Moderate shifts (0.2–0.5σ): Balanced values 

(e.g., 1 20.1 0.15, 0.15 0.2     ) offer a trade-off 

between responsiveness and robustness. 

Large shifts (≥ 0.5σ): Higher smoothing values 

(e.g., 1 20.2 0.25, 0.25 0.3     ) reduce noise and 

false alarms in processes with significant variations. 

The table below summarizes these guidelines. 

All configurations were validated through simulation 

to ensure the in-control Average Run Length (ARL0) 

remains approximately 370, providing consistent 

baseline performance. 

Table 1: Recommended smoothing parameter settings 

for DMEWMA chart. 

Expected  

Shift Size 

Sensitivity 

Target 

Recommended 

1  2  

≤ 0.2 High 

(small shift 

detection) 

0.05 0.10 

0.2–0.5 Balanced 0.10–0.15 015–0.20 

≥ 0.5 Low 

false alarm 

0.20–0.25 0.25–0.30 

Note: These values are derived based on analytical ARL results and 
validated via simulation. Users may fine-tune based on their 

domain-specific process characteristics. 

 

2.1.2 The integrated moving average model, IMA 

 

The integrated moving average model (IMA(d,q)) is a 

specific case of the ARIMA model where there is no 

autoregressive component (p = 0) and it focuses solely 

on the integration (d > 0) and moving average  (q > 0) 

components i.e., ARIMA(0,d,q) = IMA(d,q). It is 

employed for time series that need to be differenced in 

order to eliminate seasonality or trends, and the 

residuals are then modeled using a moving average 

component. The general expression for IMA(d,q)  

processes  tI  may be defined by the Equations (2). 

 

   01 ,
d

t tB I B                (2) 

 

where   2

1 21 ... q

qB B B B         is moving-

average operators,backward shift operator; is the  B  

i.e., q

t t qB     and  1
d

B  is the differencing 

operator given by the binomial expansion [21] 

 
 

   0

1
1

d j

j

j d
B B

j d





 
 

   
  where     is the 

gamma function.  

For small values of B  the first few terms in the 

expansion is: 

 

 
 

  

1 2

3

1
1

2!

1 2
...

3!

d

t t t t

t

d d
B I I dI I

d d d
I

 




   

 
 

          (3) 

 

Consequently, the IMA model can be elegantly 

reformulated using Equations (2) and (3): 
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 

    

0 1 1 2 2

1 2 3

...

1 1 2
...

2! 3!

t t t t q t q

t t t

I

d d d d d
dI I I

         

  

     

   
    
 

 (4) 

 

where 1 1i    are coefficient of the MA model, 

0  is the mean of the process,  t  is white noise 

sequence with mean 1/  and variance 21/ ; ( )v Exp   

and  the initial values of 1 2 3, , ,...t t tI I I    are equal 1.  

 

2.1.3 The fractionally integrated moving average 

model, FIMA 

 

The fractionally integrated moving average model 

(FIMA(d,q)) is an extension of the IMA(d,q) model, 

allowing for fractional differencing instead of integer 

differencing, i.e.; 
1 1

2 2

m
d

n
    . The FIMA(d,q)   

long-memory process follows the same Equation (4) 

as the IMA(d,q) model, with the key distinction that d

is replaced by d = m/n, allowing for fractional 

differencing. 

 

 0 1 1 2 2

1 2 3

...

1 1 2

...
2! 3!

t t t t q t q

t t t

FI

m m m m m

m n n n n n
FI FI FI

n

         

  

     

     
       

        
 
 
 

(5) 

where m and n are constant and m < n.  

 

2.1.4 The design of the IMA and FIMA - DMEWMA 

scheme 

 

Equation (1) can be modified by substituting the 

IMA(d,q) process (Xt) from Equation (4). Thus, the 

DMEWMA statistic in Equation (1) is calculated as 

 
         

   

2 2 1

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1 2 1

1t t t

t t

Z Z Z

X X

    

          

 



    

     
 

 

Plug in the IMA(d,q) process in to  2

tZ ; 

 

         

   

 

    

 

2 2 1

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

0 1 1 2 2

1 2 3

1 2 1 2 1

1

...

1 1 2
...

2! 3!

t t t

t

t t q t q

t t t

t

Z Z Z

d d d d d
dI I I

X

     

                

      

   

 

  

  



    

       

    
 
    
      
  

 

 

 

Setting  2

1 .tZ    Then, the proposed 

DMEWMA statistic becomes 

 
       

   

 

    

 

2 1

2 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

0 1 1 2 2

1 2 3

1 2 1 2 1

1

...

1 1 2
...

2! 3!

t t

t

t t q t q

t t t

t

Z Z

d d d d d
dI I I

X

      

                

      

   



  

  



    

       

    
 
    
      
  

 

 

 

The stopping time, denoted as ,  is a random 

variable representing the time (or number of 

observations) until the DMEWMA statistic first 

exceeds the control limits, signaling a process change. 

Mathematically, it can be defined as: 

 
    

1 1

2

, 1 1inf 0; , ,L U tt Z L U     

 

where 1L  is the lower control limit, and 1U  is the 

upper control limit. For the in-control process, the 

interval  2

tZ  between the lower and upper control 

limits can be written as 1 1.tL U   

This can be restated for t  on the interval as 

follows: 

 

     

   

1

1 2 2 1 2 1 2 1

1 2 1 2 1 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 t

t

t

L Z

X

      

           


       





    

      
 

  
 

 

       

 

1

1 2 2 1 2 1 2 1 1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 t tU Z X          

       

       

       

    

  
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where  

 

    

0 1 1 2 2

1 2 3

...

1 1 2
...

2! 3!

t t q t q

t t t

d d d d d
dI I I

        

  

    
 

      
      
  

. 

 

The DMEWMA statistic on FIMA can be 

modified by substituting the FIMA(d,q) process (Xt) 

from Equation (5). Because the FIMA process is an 

extension of the IMA process, in which d  can be a 

fraction (d = m/n) the interval  2

tZ  between the lower 

and upper control limits can be rewritten as indicated. 

 

     

   

1

2 2 2 1 2 1 2 1

1 2 1 2 1 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 t

t

t

L Z

X

      

           


       





    

      
 

  
 

       

 

1

2 2 2 1 2 1 2 1 1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 t tU Z X          

       

       

       

    

  
 

where 

 0 1 1 2 2

1 2 3

...

1 1 2

...
2! 3!

t t q t q

t t t

m m m m m

m n n n n n
FI FI FI

n

        

  

    
 
      

         
         

  
  

  

  

and L2 is the lower control limit, and U2 is the upper 

control limit of the FIMA process. 

 

2.2 Method of calculating a control chart 

 

Let ; 1, 2,3,...t t   be the sequence of continuous 

that is independent and identically distributed random 

variables from an exponential distribution with 

parameter .   The stochastic features of the stopping 

time in relation to the DMEWMA control chart are 

critical for understanding its performance in detecting 

process alterations. The stopping time is the point 

when the control chart indicates an out-of-control 

condition. The Average Run Length (ARL) can be 

rigorously defined using expectation notation while 

accounting for a fixed change point i. When 

considering a process where a shift occurs at a specific 

time i, we define the ARL more precisely as: 

   iARL i E t  when  .iE  is the expectation 

operator conditioned on a fixed change point i. This 

enables us to separate ARL into two main conditions: 

In-Control ARL  0ARL  is the ARL when the process 

is stable (before any shift occurs). It is defined as: 

 0 , .LB UBARL E   An appropriate control chart 

should include a large ARL. Out-of-Control ARL 

 1ARL  with change point .i  If a shift occurs at time 

,i  then the ARL depends on when the shift is detected: 

 1 1 , ,| .LB UB LB UBARL E i    An appropriate control 

chart should include a small ARL. 

 

2.2.1 The IMA - DMEWMA Exact Formula based on 

Fredholm Integral Equation 

 

Let  I   be the analytical ARL used to identify shifts 

in the ( ),IMA d q  process with exponential white 

noise (𝜀𝑡 ∼ 𝐸𝑥𝑝(𝜈)) running on the DMEWMA 

control chart when the initial value of 
 2

1tZ   is   

defined as 

 

 

     

 

 

 

 
1

1

1

2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1

1

t

U

t

L

Z

X
I I f d

     

   
  

      

       





    
 
  

   
     
 
    


 

 

The integral equation can be found by changing 

the integral variables as follows: 

Let  

       

 

 

1

2 2 1 2 1 2 1 1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 t ts Z X         

      

       

       

    

   

 

Then, 

     

   

 

1

2 2 1 2 1 2 1

1 2 1 2 1 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 t

t

s Z

X

     

          


      





    

      


  
 

and 
1 2 1 2 1 2 1 2

1
d ds

      


  
 

 

The integral equations can be obtained by 

altering the integral variable as 
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 

 

     

 

 

 

1

1

1 2 1 2 1 2 1 2

1

2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1
1

1 t

t

U

L

I

s Z

X

I s f ds


       

      

   

       

       





  
  

     
 
  

 
     

   
 
 
 
 
 



 

Since the function of 𝜀𝑡 ∼ 𝐸𝑥𝑝(𝜈) is 

 
1

exp ,
x

f x
 

 
  

 
 then  I   can be rewritten as: 

 

 
 

 

     

 

 

 

1

1

1 2 1 2 1 2 1 2

1

2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1
1

1

exp

t

t

U

L

I

s Z

X

I s ds


        

      

   

       

        





  
  

      
  
    
  

       
 

   
 
 
 
 



 

(6) 

 

Equation (6) was evaluated using Banach's fixed-

point theorem to ensure its existence and uniqueness. 

To improve the tractability of Equation (6 ) , we 

decompose the integral expression into simpler 

components through variable substitution. 

Specifically, we define two auxiliary terms: O  to 

represent the integral part and  Q   to encapsulate 

the exponential and algebraic expressions. This 

separation serves both notational clarity and 

computational convenience. The term  Q  isolates 

the components that depend on the upper limit of 

integration   while O  captures the structure of the 

full integral over the interval  1 1, .l u This 

transformation allows us to rewrite Equation (6)  in a 

compact multiplicative form, as shown in Equation 

(7) , which simplifies both analytical handling and 

numerical implementation. Conceptually, this step 

facilitates better control over the expression’s 

complexity, making it more suitable for algorithmic 

computation of the Average Run Length (ARL). 

Now, we examine converting the Equation (6) by 

setting new variables as 

 

 
 

1

1 1 2 1 2 1 2 1 2

exp

U

L

s
O I s ds

       

 
      
  and 

 

     

 

 

1

2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 2 1 2

1

exp exp

t

t

Z

X
Q

     

   


        





    
 
    

    
     

 
 

 

 

This equation can then be rewritten as 

 

 
 

 1 2 1 2 1 2 1 2

1
Q

I O



        

 
  

          (7) 

 

Next, the variable O  is considered. 

     

1 1

1

2 1 2 1 2 1 1 2 1 2 1

2

2 1 2 1

exp exp

1
1 exp

exp exp exp

t t

U L
R

R R
O

Z X

R

U L

R R


 

        

 

 

  

 

      
     

    


    
  

 
 

        
       

      

 

 

where 1 2 1 2 1 2 1 2R            . 

By substituting constant O  into Equation (7), 

 I   becomes 

 

 

     

 

     

1

2 2 1 2 1 2 1

1 2 1 2 1

1 1
2

1

2 1 2 1 2 1 1 2 1 2 1

2

2 1 2 1

1

1 exp exp

exp exp

exp

exp exp exp

t

t

t t

Z

X
I

R

U L

R R

Z X

R

U L

R R

      

   


 


 

        




 

  





 

    
 
    

     
  

 
 

      
    

    


    
  

 
 

      
     

    

 
 
 
 
  

  
  

 

 

The explicit formula for the in-control process 

with the exponential parameter 0   is as follows: 
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     

 

     

1

2 2 1 2 1 2 1

1 2 1 2 1

0

0 0

1 1
2

0 0

1

2 1 2 1 2 1 1 2 1 2 1

2

0

2 1

0 0

1

_ 1 exp exp

exp exp

exp

exp exp exp

t

t

t t

Z

X
ARL I

R

U L

R R

Z X

R

U

R

      

   

 


 

        






 





 

    
 
     

    
  

 
 

     
    

    


    
  

 
 

   
    

   

2 1

0

L

R





 
 
 
 

   
   

   

 

(8) 

 

On the other hand, the explicit formula for the 

out-control process with the exponential parameter 

 1 0 1       where   is mean shift size.  

 

2.2.2 The IMA - DMEWMA approximate formula 

based on the NIE technique 

 

The Numerical Integral Equation (NIE) technique is a 

powerful method for solving integral equations 

numerically, particularly when analytical solutions are 

difficult or impossible to obtain. Widely used in 

physics, engineering, and applied mathematics, this 

technique serves as a crucial tool for validating 

analytical formulas. In this approach, the solution is 

derived from the integral Equation [22] in Equation (7).  

 

 

 

     

 

 

 

1

1

1 2 1 2 1 2 1 2

1

2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1
1

1 t

t

U

L

I

s Z

X

I s f ds


       

      

   

       

       





 
  

     
 
  

 
     

 
   
 
 
 
 
 



          (9) 

 

To achieve this, the Composite Midpoint Rule is 

employed, systematically dividing the domain interval 

 1 2,L L  into m  equally spaced sub-grids, ensuring 

precise and efficient computation. 

 

   
1

b p

k k

ka

f u du w f 


  

 

where / ,kw b p  and  0.5 ;k kw k    

1, 2,3,..., .k p  

The approximate solution using the NIE 

technique, as presented in Equation (9), facilitates 

numerical evaluation, with Equation (10) 

summarizing the midpoint rule approximation. 

Thereby, the approximation of the numerical integral 

for the function  NI   is 

 

 

     

 

 

 

1 2 1 2 1 2 1 2

1

2 2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1 2 1 2

1 1 2 1 2 1 2 1 2

1
1

1

N

k t

t

p

k k

k

I

Z

X

w I f


       

       

   

       


       







 
  

     
 
  

 
     

 
   
 
 
 
 
 



   (10) 

 

2.2.3 The FIMA - DMEWMA exact formula based on 

fredholm integral equation 

 

Let  F   be the analytical ARL used to identify 

shifts in the ( ),IMA dF q  process with exponential 

white noise (𝜀𝑡 ∼ 𝐸𝑥𝑝(𝜈)) running on the 

DMEWMA control chart when the initial value of 
 2

1tZ   . The exact ARL for the FIMA–DMEWMA 

chart is derived in Equation (11), which follows the 

Fredholm integral framework similar to the IMA 

model. 

 

 

     

 

     

1

2 2 1 2 1 2 1

1 2 1 2 1

2 2
2

1

2 1 2 1 2 1 1 2 1 2 1

2

2 2 2 2

1

1 exp exp

exp exp

exp

exp exp exp

t

t

t t

Z

X
FI

R

U L

R R

Z X

R

U L

R R

     

   


 


 

       




 

  





 

    
 
    

     
  

 
 

      
    

    


    
  

 
 

     
     

    

 
 
 
 
  

  
  

 

(11) 

 

Follow the same steps as for the IMA process 

calculation to get the Equation (12). 
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The explicit formula for the in-control process 

with the exponential parameter 0   is as follows: 

 

     

 

     

1

2 2 1 2 1 2 1

1 2 1 2 1

0 0

2 2
2

0 0

1

2 1 2 1 2 1 1 2 1 2 1

2

0

2 2 2

0 0

1

1 exp exp

exp exp

exp

exp exp exp

t

t

t t

Z

X
FI

R

U L

R R

Z X

R

U

R

      

   


 


 

        




 

 
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On the other hand, the explicit formula for the 

out-control process with the exponential parameter 

 1 0 1       where   is mean shift size.  

 

2.2.4 The FIMA - DMEWMA approximate formula 

based on the NIE technique 

 

In the FIMA model, when dealing with exponential 

white noise, the function  NFI   is evaluated using 

the numerical integral equation technique with the 

Composite Midpoint Rule to approximate the ARL on 

the DMEWMA control chart. Similar to Equation (8), 

the weights assigned to the start and end points are 

/ ,kw b p  0.5 ;k kw k   1, 2,3,..., .k p   

Ultimately, the numerical integral approximation 

for the function  NFI   is given by: 
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  (13) 

3 Results and Discussion 

 

3.1 Establishing the control limits 

 

To analyze the control process, we will determine the 

Upper Control Limit (UCL) using the exact formula. 

This will help us observe the direction of the control 

limit for each process. The process mean is set at 

0 1   and the initial ARL0 is predefined as 370. The 

control limits can be adjusted based on different 

combinations of 1 2,   and K1,K2 to align with the 

predefined ARL0 values. For the DMEWMA control 

chart, the parameter sets chosen for  1 2,   are 

(0.05,0.1), (0.10,0.2), and (0.20,0.25). Similarly, for 

the smoothing parameters, the selected combinations 

for  1 2,   are selected as (0.2,0.5), (0.5,0.7), (1,2), 

and (3,5). Additionally, the parameters 1  and 2  are 

defined as 0.1 and 0.2, respectively. For the IMA 

process, the initial conditions are set to 

1 2 3, , ,..., 1,t t t t dI I I I       while for the FIMA process, 

the initial conditions are 1 2 3, , ,..., 1.t t t t dFI FI FI FI      

 

3.1.1  Construction of the control limits for IMA 

 

Table 2 summarizes the results from two analytical 

perspectives. Firstly, with respect to the constants 

(K1,K2), it was found that the DMEWMA control chart 

configured with q = 1, K1 = 0.2 and K2 = 0.5 produced 

an upper control limit (UCL) of 0.01389 for both d = 1 

and d = 2. An increase in the values of (K1,K2) the 

corresponding led to higher UCLs. Secondly, when 

considering the effect of the smoothing parameter, 

1 2,   it was similarly observed that larger values of 

 1 2,   resulted in increased UCLs. Nonetheless, 

within each configuration of 1 2,  , the variation in 

the UCL due to changes in 1 2,   remained relatively 

small. For example, for (K1,K2) = (1,2), the UCL 

values obtained were 0.85086, 0.898933, and 

0.968456, respectively. This trend is consistently 

observed in the case where q = 2, as well. 

 

3.1.2  Construction of the control limits for FIMA 

 

The results presented in Table 3 align with those 

observed in Table 1. Specifically, as the values of 

K1,K2 and 1 2,   increase, the upper control limit 

(UCL) also increases. However, a key distinction 

arises when comparing the FIMA(d,1) and FIMA(d,2)  

models. In the case of FIMA(d,1),  the UCL varies with 

different values of d, indicating a sensitivity to the 

differencing order. Conversely, for FIMA(d,2), 

variations in d have no observable effect on the UCL, 

suggesting robustness with respect to this parameter.
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Table 2: Upper control limit values for the DMEWMA control chart with ARL0 = 370 on IMA(d,q) process. 

  
K1,K2 

IMA(d,1) IMA(d,2) 

1  2  d = 1 d = 2 d = 1 d = 2 

0.05 0.1 

0.2,0.5 0.013890 0.013890 0.017065 0.017065 

0.5,0.7 0.139000 0.139000 0.170464 0.170464 

1,2 0.850860 0.850860 1.043895 1.043895 

3,5 6.356550 6.356550 7.800439 7.800439 

0.1 0.2 

0.2,0.5 0.025894 0.025894 0.031750 0.031750 

0.5,0.7 0.148545 0.148545 0.182615 0.182615 

1,2 0.898933 0.898933 1.107440 1.107440 

3,5 6.644260 6.644260 8.193140 8.193140 

0.2 0.25 

0.2,0.5 0.042837 0.042837 0.052551 0.052551 

0.5,0.7 0.179410 0.179410 0.220860 0.220860 

1,2 0.968456 0.968456 1.195257 1.195257 

3,5 6.897273 6.897273 8.525740 8.525740 

 

Table 3: Upper control limit values for the DMEWMA control chart with ARL0 = 370 on the FIMA(d,q) 

process. 

  
K1,K2 

FIMA(d,1) FIMA(d,2)  

1  2  d = 0.25 d = 0.50 d = 0.25 d = 0.50 

0.05 0.1 

0.2,0.5 0.022220 0.016651 0.017065 0.017065 

0.5,0.7 0.221347 0.166366 0.170464 0.170464 

1,2 1.356379 1.018748 1.043895 1.043895 

3,5 10.13926 7.612310 7.800450 7.800450 

0.1 0.2 

0.2,0.5 0.041215 0.030987 0.031750 0.031750 

0.5,0.7 0.238070 0.178169 0.182615 0.182615 

1,2 1.448771 1.080178 1.107440 1.107440 

3,5 10.73531 7.990450 8.193140 8.193140 

0.2 0.25 

0.2,0.5 0.068271 0.051286 0.052551 0.052551 

0.5,0.7 0.288577 0.215444 0.220860 0.220860 

1,2 1.568405 1.165555 1.195257 1.195257 

3,5 11.21660 8.312170 8.525740 8.525740 

3.2 Experimental results 

 

The experimental results presented in this study are 

obtained using a simulation method with 1,000 

iterations conducted in the Mathematica program. The 

process is divided into two main steps: first, verifying 

the accuracy of the proposed formula by ensuring it 

aligns with the NIE technique; second, comparing the 

performance of the DMEWMA control chart with the 

MEWMA chart when the process mean shifts. 

Specifically, the mean shift values are set at   = 0.01, 

0.02, 0.05, 0.10, 0.20, 0.50, 1.00 and 2.00. 

 

3.2.1  Performance of the control charts 

 

To evaluate performance in terms of ARL1, we 

compare the results obtained using the proposed 

formula with those from the NIE technique. A smaller 

ARL1 value indicates better statistical performance. 

Additionally, the proposed formula is assessed against 

the NIE technique based on computation time (in 

seconds) and percentage accuracy by 

 

( ) ( )
% 100 100%

( )

NARL ARL
Acc

ARL

 




    

 

where  ARL   is the ARL values obtained by using 

the exact formula and NARL  is the ARL values 

obtained by using the NIE technique. Strong 

agreement between the two approaches is 

demonstrated by a percentage value close to 100%, 

which shows that the ARL1 derived from the proposed 

formula substantially resembles the outcome from the 

numerical integration equation (NIE) technique. 

To evaluate the computational efficiency of the 

proposed analytical solution, we compared its 

performance against the NIE technique under various 

parameter settings. The analytical method consistently 

yielded accurate ARL₁ values (with 100% agreement 

to NIE) while requiring computation times of less than 
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0.001 seconds in all cases. In contrast, the NIE 

approach took several seconds to complete, and its 

runtime increased with the complexity of the 

parameter values. 

These findings highlight a key practical 

advantage of the proposed method: it offers both high 

accuracy and substantial reductions in computational 

cost, making it suitable for use in real-time monitoring 

environments or large-scale simulations. 

Tables 4 and 5 present the results of a 

comparative analysis between the proposed method 

and the NIE technique in terms of ARL1 values, 

computation time, and accuracy percentage applied to 

the IMA(d,q) and FIMA(d,q) models, respectively. 

The findings demonstrate that the out-of-control ARL 

values computed using the formula-based method 

closely approximate those obtained via the NIE 

technique, as confirmed by the percentage accuracy 

metric. Notably, the percentage accuracy is 100% 

across all cases. Both methods exhibit high sensitivity 

in detecting process shifts. However, the formula 

method demonstrates a clear advantage in 

computational efficiency, yielding results almost 

instantaneously. In contrast, the NIE technique 

requires significantly more computation time, which 

increases with the complexity of the conditions. 

Overall, the comparison affirms the strong agreement 

between the two approaches and highlights the high 

accuracy and practical efficiency of the proposed 

formula-based method.

 

Table 4: Comparison of the accuracy of the exact formula and NIE technique for the IMA(1,q) process with 0.1  . 
Coefficients   0.00 0.01 0.05 0.10 0.50 1.00 

1 2,   K1,K2 q  ARL0 (time) ARL1 (time) ARL1 (time) ARL1 (time) ARL1 (time) ARL1 (time) 

0.05,0.1 0.2,0.1 1 
Exact 

369.9649893 

(<0.001) 

331.5503537 

(<0.001) 

220.3416822 

(<0.001) 

139.8602541 

(<0.001) 

13.2122151 

(<0.001) 

3.3397219 

(<0.001) 

NIE 
369.9649865 

(6.58) 

331.5503539 

(7.21) 

220.3416821 

(7.74) 

139.8602541 

(8.03) 

13.2122151 

(8.87) 

3.3397212 

(9.28) 

%Acc 100 100 100 100 100 100 

2 
Exact 

369.9869431 

(<0.001) 

332.7873170 

(<0.001) 

223.9747898 

(<0.001) 

143.9567985 

(<0.001) 

14.2667338 

(<0.001) 

3.6220199 

(<0.001) 

NIE 
369.9869027 

(10.13) 

332.7873171 

(10.79) 

223.9747185 

(11.06) 

143.9567938 

(12.60) 

14.2667339 

(12.44) 

3.6220117 

(13.91) 

%Acc 100 100 100 100 100 100 

1,2 1 
Exact 

370.17523440 

(<0.001) 

56.06197828 

(<0.001) 

13.28776187 

(<0.001) 

7.12077396 

(<0.001) 

2.10075377 

(<0.001) 

1.50608020 

(<0.001) 

NIE 
370.17523529 

(6.29) 

56.06162084 

(7.02) 

13.28792650 

(8.67) 

7.12079844 

(9.27) 

2.10079925 

(10.81) 

1.59749579 

(10.96) 

%Acc 100 100 100 100 100 100 

2 Exact 
369.98480738 

(<0.001) 

59.69587655 

(<0.001) 

14.26983668 

(<0.001) 

7.64976073 

(<0.001) 

2.23112934 

(<0.001) 

1.57805497 

(<0.001) 

NIE 
369.98481185 

(12.37) 

59.69593759 

(12.55) 

14.26983630 

(13.74) 

7.64976295 

(14.81) 

2.23112923 

(15.48) 

1.57803860 

(16.77) 

%Acc 100 100 100 100 100 100 

0.2,0.25 0.5,0.7 1 Exact 
370.05815532 

(<0.001) 

90.76015149 

(<0.001) 

22.20839354 

(<0.001) 

11.29054195 

(<0.001) 

2.48898928 

(<0.001) 

1.58354985 

(<0.001) 

NIE 
370.05815376 

(8.62) 

90.76015227 

(9.19) 

22.20833740 

(10.48) 

11.29051880 

(11.92) 

2.48898997 

(11.99) 

1.58354118 

(12.74) 

%Acc 100 100 100 100 100 100 

2 Exact 
369.98225985 

(<0.001) 

95.84630260 

(<0.001) 

23.81170410 

(<0.001) 

12.14487326 

(<0.001) 

2.66183562 

(<0.001) 

1.66566662 

(<0.001) 

NIE 
369.98225983 

(8.89) 

95.84630898 

(9.39) 

23.81170987 

(10.93) 

12.14489879 

(12.75) 

2.66183398 

(12.79) 

1.66566119 

(14.83) 

%Acc 100 100 100 100 100 100 

3,5 1 Exact 
370.00774435 

(<0.001) 

43.18049036 

(<0.001) 

10.24616089 

(<0.001) 

5.65831863 

(<0.001) 

1.91262908 

(<0.001) 

1.44617959 

(<0.001) 

NIE 
370.00774436 

(10.28) 

43.18049299 

(11.59) 

10.24616909 

(11.73) 

5.65831828 

(12.58) 

1.91262928 

(13.66) 

1.44617039 

(13.84) 

%Acc 100 100 100 100 100 100 

2 
Exact 

369.99238761 

(<0.001) 

46.54677493 

(<0.001) 

11.10325344 

(<0.001) 

6.11906555 

(<0.001) 

2.03137437 

(<0.001) 

1.51460586 

(<0.001) 

NIE 
369.99238738 

(10.78) 

46.54677495 

(11.39) 

11.10325457 

(11.90) 

6.11906551 

(13.04) 

2.03137435 

(13.68) 

1.51460544 

(15.03) 

%Acc 100 100 100 100 100 100 

 

 



  

                             Applied Science and Engineering Progress, Vol. 19, No. 1, 2026, 7846 
     

 

 

J. Neammai et al., “Detecting Changes in the Mean of an Integration and Fractionally Integrated MA Process on Double Modified 

EWMA Control Chart.” 

  
11 

Table 5: Comparison of the accuracy of the exact formula and NIE technique for the FIMA(0.25,q) process with 

1 20 1 0 2. , .   . 
Coefficients   0.00 0.01 0.05 0.10 0.50 1.00 

1 2,   K1,K2 q  ARL0 (time) ARL1 (time) ARL1 (time) ARL1 (time) ARL1 (time) ARL1(time) 

0.05,0.1 0.2,0.1 1 
Exact 

369.93724008 

(<0.001) 

334.30936034 

(<0.001) 

228.69997057 

(<0.001) 

149.41166837 

(<0.001) 

15.77569259 

(<0.001) 

4.03967393 

(<0.001) 

NIE 
369.93724039 

(5.98) 

334.30934567 

(6.21) 

228.69997098 

(7.49) 

149.41166568 

(7.99) 

15.77569457 

(8.36) 

4.03967348 

(9.32) 

%Acc 100 100 100 100 100 100 

2 
Exact 

369.98694311 

(<0.001) 

332.78731701 

(<0.001) 

223.97478989 

(<0.001) 

143.95679853 

(<0.001) 

14.26673387 

(<0.001) 

3.62201997 

(<0.001) 

NIE 
369.98694337 

(6.44) 

332.78731702 

(7.27) 

223.97432530 

(7.85) 

143.95679835 

(8.37) 

14.26645369 

(9.26) 

3.62201578 

(10.33) 

%Acc 100 100 100 100 100 100 

1,2 1 
Exact 

370.03812943 

(<0.001) 

65.15123596 

(<0.001) 

15.77372525 

(<0.001) 

8.46150646 

(<0.001) 

2.43208072 

(<0.001) 

1.68981286 

(<0.001) 

NIE 
370.03578500 

(6.84) 

65.15123546 

(7.25) 

15.77372354 

(8.21) 

8.46157575 

(9.11) 

2.43208089 

(10.10) 

1.68981288 

(11.34) 

%Acc 100 100 100 100 100 100 

2 
Exact 

369.98480738 

(<0.001) 

59.69587655 

(<0.001) 

14.26983668 

(<0.001) 

7.64976073 

(<0.001) 

2.23112934 

(<0.001) 

1.57805497 

(<0.001) 

NIE 
369.98484486 

(8.65) 

59.69587038 

(9.23) 

14.26983347 

(9.87) 

7.64976798 

(10.34) 

2.23117978 

(11.27) 

1.57805978 

(11.67) 

%Acc 100 100 100 100 100 100 

0.2,0.25 0.5,0.7 1 
Exact 

369.98289432 

(<0.001) 

103.24401424 

(<0.001) 

26.22293766 

(<0.001) 

13.43726552 

(<0.001) 

2.92659543 

(<0.001) 

1.79283915 

(<0.001) 

NIE 
369.98289424 

(8.24) 

103.24401430 

(9.53) 

26.22293457 

(9.56) 

13.43726436 

(10.22) 

2.92659058 

(11.53) 

1.79284577 

(12.12) 

%Acc 100 100 100 100 100 100 

2 
Exact 

369.98225985 

(<0.001) 

95.84630260 

(<0.001) 

23.81170410 

(<0.001) 

12.14487326 

(<0.001) 

2.66183562 

(<0.001) 

1.66566662 

(<0.001) 

NIE 
369.98225985 

(8.67) 

95.84630277 

(9.43) 

23.81170498 

(10.36) 

12.14487329 

(11.28) 

2.66183563 

(11.82) 

1.66566648 

(12.88) 

%Acc 100 100 100 100 100 100 

3,5 1 
Exact 

369.92824153 

(<0.001) 

51.85960425 

(<0.001) 

12.48076333 

(<0.001) 

6.85986400 

(<0.001) 

2.22157480 

(<0.001) 

1.62446498 

(<0.001) 

NIE 
369.92824164 

(8.71) 

51.85960429 

(9.52) 

12.48076330 

(10.46) 

6.85986346 

(11.62) 

2.22157479 

(12.03) 

1.62446498 

(12.60) 

%Acc 100 100 100 100 100 100 

2 
Exact 

369.99238761 

(<0.001) 

46.54677493 

(<0.001) 

11.10325344 

(<0.001) 

6.11906555 

(<0.001) 

2.03137437 

(<0.001) 

1.51460586 

(<0.001) 

NIE 
369.99238723 

(9.46) 

46.54677493 

(9.87) 

11.10325335 

(10.34) 

6.11906558 

(11.45) 

2.03137436 

(12.04) 

1.51460589 

(13.98) 

%Acc 100 100 100 100 100 100 

 

3.2.2  Compare the control charts 

 

Previous studies have investigated the effectiveness of 

EWMA and MEWMA control charts under 

fractionally integrated processes. Notably, Phanthuna 

and Areepong [19] compared these methods and 

concluded that MEWMA provides better detection 

sensitivity than classical EWMA, particularly in the 

presence of long-memory structures. Their work, 

which used IMA and FIMA models, demonstrated the 

limitations of EWMA when applied to autocorrelated 

data with fractional differencing. 

Building upon these findings, the present study 

introduces the DMEWMA control chart as a further 

enhancement. By incorporating a second smoothing 

parameter, DMEWMA outperforms MEWMA in 

terms of ARL₁ values across a broader range of shift 

magnitudes. In particular, the DMEWMA chart 

achieves superior performance not only in early 

detection of small shifts but also maintains stability 

and robustness under moderate and large process 

changes. This progression—from EWMA to 

MEWMA and now to DMEWMA—illustrates a 

natural evolution in control chart design tailored for 

complex time series data. 

The performance of the DMEWMA and 

MEWMA control charts is compared across various 

values of 1 2,   with the ARL for the DMEWMA 

control chart calculated using the proposed exact 

formula. To evaluate the overall performance, the 

relative mean index (RMI) [23] and the average extra 

quadratic loss (AEQL) [24] are utilized. These metrics 

are calculated using the formulas with  
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where v is number of shifts size considered,  1 uARL r  

and  min

1 uARL r  are the ARL1 values and the smallest 

ARL1 values, receptively. For the i  represents the 

value of the shift change for order i in the process, and 

  is the sum of shift change values from min 0.01   

to max 2.   The control chart that achieves the lowest 

values for both the RMI and the AEQL is considered 

the most effective tool for detecting changes in the 

process. 

Tables 8 and 9 present a performance comparison 

between the MEWMA and DMEWMA control charts 

under the ,1(1 )IMA and (0.5 ),1FIMA models, 

respectively, across varying parameter settings. For 

each chart, the smoothing parameter   is defined as 

follows: for the MEWMA chart, 1   with the 

constant 1   also specified to capture sensitivity to 

process changes. Additionally, various coefficient 

parameters are considered while maintaining a 

constant in-control Average Run Length (ARL1) of 

370. 

To evaluate the performance of the control 

charts, three key metrics are compared: the out-of-

control Average Run Length (ARL1), the RMI, and the 

AEQL. The findings from both tables exhibit 

consistent trends: 

ARL1: The MEWMA control chart demonstrates 

superior performance under small to moderate shifts 

when both   and   are small (e.g., 0.05, 0.1). 

However, as  increases to 0.1 and 0.2, the 

DMEWMA control chart outperforms MEWMA, 

particularly when    1 2, 0.2,0.5 .    In scenarios 

involving larger values of ,  the DMEWMA chart 

exhibits more effective performance. 

RMI: The MEWMA control chart achieves 

favorable RMI values only when 1 2,   are at their 

smallest values (0.2, 0.5), regardless of the value of 

.  In all other configurations, the DMEWMA control 

chart yields superior RMI performance. 

AEQL: The DMEWMA control chart shows 

improved performance across nearly all conditions, 

with the exception of cases where 

   1 2, 0.05,0.1   and    1 2, 0.2,0.5   , in 

which the MEWMA control chart slightly 

outperforms. Figure 3 illustrates the Relative Median 

Index (RMI) across different parameter settings, 

highlighting the superior performance of the 

DMEWMA chart compared to MEWMA in both IMA 

and FIMA models. Similarly, Figure 4 presents the 

Average Expected Quadratic Loss (AEQL), 

reinforcing the observation that the DMEWMA chart 

consistently yields lower loss values under all 

conditions. Both Figures 3 and 4 are graphical 

representations derived from the results shown in 

Tables 8 and 9, respectively, which summarize the 

comparative performance metrics of the control charts 

under various shift conditions and smoothing 

parameter configurations. 

In summary, based on the combined evaluation 

of ARL₁, RMI, and AEQL, the DMEWMA control 

chart demonstrates robust and consistent performance 

when 1 2,   assuming medium to high values and 

1 2,   are set at a moderate level. 

 

3.3 Applications 
 

3.3.1  Real data represented by IMA process 

 

The first dataset utilized in this study comprises daily 

energy absolute (EA) PCL data from Thailand, 

spanning the period from January 1 to March 20, 2025, 

totaling 55 observations, whose data characteristics 

are shown in Figure 1. The data were retrieved from 

Investing.com (https://th.investing.com/equities/energy- 

historical-data), accessed on March 21, 2025. To 

model the underlying structure of the series, the 

( ),IMA d q model was employed, and parameter 

estimation was conducted using SPSS.  

 

 
Figure 1: The characteristics of the PCL data. 
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The adequacy of the model residuals was 

evaluated via the Kolmogorov–Smirnov test to assess 

their conformity with an exponential distribution, as 

shown in Table 6.  

 

Table 6: Kolmogorov–Smirnov test results for 

exponential distribution assumption for PCL data. 
Model Exponential Parameter P-value 

IMA(1,1) 0.1208 0.402 

 

The analysis revealed that the data are 

appropriately characterized by an  1,1IMA  process, 

specified as: 

 

 1 10.030 0.149 ; 0.1208t t t t tI I Exp         

 

This suggests that the series exhibits 

characteristics consistent with a first-order integrated 

moving average process with exponentially 

distributed innovations. 

 

3.3.2  Real data represented by FIMA process 

 

The second dataset analyzed in this study consists of 

monthly stock data for PTT Public Company Limited 

(PTT PCL) in Thailand, covering the period from 

April 2021 to March 2025, with a total of 48 

observations whose data characteristics are shown in 

Figure 2. These data were sourced from Investing.com 

(https://th.investing.com/equities/ptt-historical-data) 
and accessed on March 21, 2025. To capture the 

temporal dependencies within the series, the 

( ),IMA dF q modeling approach was applied, with 

model fitting performed using SPSS.  

 
Figure 2: The characteristics of the PTT data. 

 

The residuals from the fitted model were 

subjected to the Kolmogorov–Smirnov test to evaluate 

their goodness-of-fit to an exponential distribution, as 

shown in Table 7.  

 

Table 7: Kolmogorov–Smirnov test results for 

exponential distribution assumption for PTT data. 
Model Exponential Parameter P-value 

FIMA(0.5,1) 1.4844 0.985 

 

The results indicate that the series is well-

represented by an FIMA(0.5,2) model, formally 

expressed as: 

 

 
1 2 1

2

34.705 0.7 0.668 0.5

0.125 ...; 1.4844

t t t t t

t t

FI FI

FI Exp

  



  



    

 
 

 

This outcome implies that the series 

demonstrates properties characteristic of a second-

order fractionally integrated moving average process 

with innovations following an exponential distribution. 

 

Table 8: Comparison of the performance of the DMEWMA control chart and the MEWMA control chart on the 

 1,1IMA  process with 0.1  . 

1 2,   

K1, K2 0.2,0.5 0.5,0.7 1,2 3,5 

Model 
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  

  U=0.075864 0.013890 0.203459 0.139000 0.408730 0.850860 1.228420 6.356550 

0.05,0.1 0.00 370.019 369.965 370.012 370.710 369.920 370.175 370.060 370.162 

0.01 292.628 331.550 142.684 166.170 82.647 56.062 51.982 42.496 

0.02 239.197 298.068 87.518 105.743 46.531 30.623 28.296 22.964 

0.05 147.646 220.342 39.509 48.870 20.175 13.288 12.317 10.086 

0.1 82.2419 139.860 19.874 24.423 10.452 7.121 6.661 5.579 

0.2 36.6877 64.901 9.478 11.288 5.453 3.975 3.776 3.285 

0.5 9.26782 13.212 3.547 3.899 2.526 2.101 2.050 1.900 

1 3.21051 3.340 1.942 2.001 1.648 1.506 1.493 1.441 

2 1.5766 1.414 1.346 1.343 1.274 1.232 1.231 1.216 

RMI 7.281599 11.23602 1.73185 2.214921 0.628242 0.20259 0.143449 0 

AEQL 1.827231 2.12461 1.11747 1.153074 0.972097 0.905067 0.89941 0.87573 
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Table 8: (Continued) 

1 2,   

K1, K2 0.2,0.5 0.5,0.7 1,2 3,5 

Model 
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  

  U=0.075864 0.013890 0.203459 0.139000 0.408730 0.850860 1.228420 6.356550 

0.1,0.2  0.084565 0.025894 0.207920 0.148545 0.413935 0.898933 1.241170 6.644260 

0.00 369.952 370.080 370.107 369.991 369.881 370.023 369.925 370.099 

0.01 242.454 277.111 122.853 116.228 77.207 52.771 51.404 43.053 

0.02 177.702 218.067 73.060 68.347 43.166 28.729 27.967 23.275 

0.05 94.0586 125.611 32.328 29.933 18.679 12.477 12.177 10.217 

0.1 48.428 65.870 16.297 15.007 9.717 6.720 6.591 5.645 

0.2 21.3002 27.564 7.923 7.268 5.121 3.787 3.744 3.317 

0.5 5.99789 6.469 3.134 2.889 2.424 2.037 2.039 1.912 

1 2.47369 2.306 1.812 1.701 1.611 1.480 1.489 1.446 

2 1.42814 1.303 1.307 1.258 1.261 1.221 1.229 1.218 

RMI 4.436645 5.765816 1.299677 1.141955 0.519745 0.138091 0.123576 0 

AEQL 1.41906 1.415684 1.053174 1.001229 0.954121 0.892486 0.897227 0.878036 

0.2,0.25  0.0993 0.042837 0.218981 0.179410 0.425853 0.968456 1.267458 6.897273 

0.00 369.42 369.945 369.929 370.058 369.888 370.006 370.001 370.008 

0.01 155.911 184.170 94.827 90.760 68.401 50.314 50.351 43.180 

0.02 97.4941 120.451 54.158 51.499 37.832 27.325 27.366 23.346 

0.05 44.2944 56.202 23.474 22.208 16.339 11.877 11.921 10.246 

0.1 21.9524 27.411 11.957 11.291 8.571 6.423 6.465 5.658 

0.2 10.0982 11.931 6.029 5.693 4.600 3.646 3.684 3.323 

0.5 3.51095 3.649 2.617 2.489 2.264 1.988 2.018 1.913 

1 1.84844 1.777 1.643 1.584 1.550 1.459 1.480 1.446 

2 1.28382 1.224 1.254 1.227 1.239 1.212 1.226 1.218 

RMI 1.900189 2.436397 0.784214 0.699123 0.371961 0.09693 0.10542 0.000619 

AEQL 1.081279 1.067963 0.970556 0.942509 0.925404 0.882465 0.893261 0.878128 

 
Table 9: Comparison of the performance of the DMEWMA control chart and the MEWMA control chart on the 

(0.5 ),1FIMA  process with 1 20.1, 0.2   .  

1 2,   

K1, K2 0.2,0.5 0.5,0.7 1,2 3,5 

Model 
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  

  U=0.090842 0.01665 0.243194 0.16637 0.488494 1.01875 1.46813 7.61231 

0.05,0.1 0.00 369.887 369.988 369.993 369.957 369.917 369.966 370.331 369.980 

0.01 295.97 332.643 148.228 171.695 86.792 59.237 54.899 45.055 

0.02 243.993 299.957 91.83 110.466 49.188 32.505 30.004 24.425 

0.05 153.036 223.539 41.87 51.657 21.442 14.145 13.091 10.739 

0.1 86.459 143.461 21.184 25.998 11.136 7.582 7.079 5.933 

0.2 39.134 67.662 10.152 12.09 5.816 4.225 4.006 3.481 

0.5 10.051 14.136 3.801 4.185 2.68 2.215 2.156 1.994 

1 3.473 3.586 2.056 2.121 1.727 1.569 1.554 1.496 

2 1.659 1.47 1.396 1.392 1.314 1.266 1.265 1.247 

RMI 7.16454 10.84528 1.729432 2.20395 0.629595 0.203659 0.143043 0 

AEQL 1.945186 2.231648 1.17055 1.208666 1.00987 0.935732 0.929281 0.902774 

0.1,0.2  0.10125 0.03099 0.248895 0.17817 0.49559 1.08018 1.486276 7.99045 

0.00 370.258 369.955 369.977 370.012 369.816 369.994 369.927 370.008 

0.01 247.505 280.346 128.118 121.295 81.258 55.982 54.402 45.871 

0.02 183.343 222.389 76.894 71.947 45.72 30.612 29.72 24.885 

0.05 98.54 129.912 34.319 31.761 19.883 13.327 12.97 10.936 

0.1 51.289 68.93 17.384 15.993 10.365 7.176 7.019 6.032 

0.2 22.791 29.194 8.481 7.769 5.464 4.033 3.977 3.53 

0.5 6.479 6.938 3.349 3.077 2.571 2.148 2.147 2.012 

1 2.649 2.45 1.911 1.786 1.686 1.541 1.55 1.505 

2 1.489 1.344 1.351 1.296 1.299 1.254 1.263 1.251 

RMI 4.362956 5.596973 1.289985 1.13049 0.516187 0.136907 0.120389 0 

AEQL 1.499215 1.482416 1.099337 1.041281 0.990385 0.92228 0.927222 0.906925 
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Table 9: (Continued) 

1 2,   

K1, K2 0.2,0.5 0.5,0.7 1,2 3,5 

Model 
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  
 1

tZ  
 2

tZ  

  U=0.090842 0.01665 0.243194 0.16637 0.488494 1.01875 1.46813 7.61231 

0.2,0.25  0.11906 0.05129 0.262842 0.21544 0.51156 1.16556 1.52377 8.31217 

0.00 370.66 370.097 370.165 369.986 370.316 370.014 369.737 369.966 

0.01 161.665 189.13 99.536 95.211 72.309 53.464 53.519 46.115 

0.02 102.074 124.89 57.28 54.417 40.224 29.158 29.214 25.021 

0.05 46.847 58.926 24.987 23.609 17.444 12.701 12.753 10.993 

0.1 23.359 28.946 12.767 12.037 9.161 6.863 6.912 6.06 

0.2 10.801 12.681 6.447 6.076 4.912 3.883 3.927 3.542 

0.5 3.756 3.887 2.784 2.64 2.398 2.096 2.13 2.016 

1 1.95 1.864 1.723 1.655 1.62 1.518 1.543 1.506 

2 1.325 1.255 1.292 1.26 1.274 1.244 1.26 1.251 

RMI 1.871726 2.373047 0.776406 0.688772 0.368782 0.094563 0.103938 0.000703 

AEQL 1.128593 1.108579 1.008485 0.97609 0.958815 0.911339 0.923828 0.907298 

 

 
(a)                                                                                  (b) 

 

Figure 3: An evaluation of the RMI for both models under differing conditions: (a) RMI corresponding to the  

IMA(1,1) model for varying K1, K2, (b) RMI corresponding to the (0.5 ),1FIMA  model for varying.   

 

 
(a)                                                                                   (b) 

 

Figure 4: An evaluation of the AEQL for both models under differing conditions : (a) AEQL corresponding to 

the IMA(1,1) model for varying K1, K2, (b) AEQL corresponding to the FIMA(0.5,1) model for varying.   

 



  

                             Applied Science and Engineering Progress, Vol. 19, No. 1, 2026, 7846 

    

 

 

J. Neammai et al., “Detecting Changes in the Mean of an Integration and Fractionally Integrated MA Process on Double Modified 

EWMA Control Chart.” 

  
16 

The performance of the MEWMA and 

DMEWMA control charts, as presented in Tables 10 

and 11, was assessed using the IMA and FIMA 

processes, respectively. The findings reveal that the 

DMEWMA chart—particularly with parameter 

configurations  1 2,   set to (0.05, 0.10) and (0.10, 

0.20)—consistently yields lower ARL₁ values 

compared to the MEWMA chart across all examined 

scenarios and model settings, indicating superior 

sensitivity in detecting out-of-control conditions. 

Additionally, the results from the RMI and AEQL 

further support the enhanced efficiency of the 

DMEWMA chart, as it demonstrates uniformly lower 

values under all conditions. These findings align 

closely with those obtained from the simulation study 

and are further illustrated by the graphical 

comparisons in Figures 5 and 6. 

 

Table 10: Comparison of the performance of the control charts on the IMA(1,1) process modelled EA stock data. 

1 2,   

K1, K2 1,2 

1 2,   

K1, K2 0.5,0.7 

Model 
 1

tZ  
 2

tZ  model 
 1

tZ  
 2

tZ  

  0.789 0.378530   0.29576 0.090214 

0.05,0.1 0.00 370.006 369.959 0.1,0.2 0.00 370.058 370.129 

0.01 357.296 348.986 0.01 362.984 237.842 

0.02 345.391 329.583 0.02 318.012 176.392 

0.05 313.9 279.446 0.05 285.651 84.661 

0.1 272.667 216.584 0.1 275.997 50.942 

0.2 218.138 138.768 0.2 142.084 22.001 

0.5 153.104 52.442 0.5 41.603 8.852 

1 130.901 20.208 1 12.718 2.993 

2 54.5778 8.166 2 4.826 1.562 

RMI 1.763 0.000 RMI 2.827 0.000 

AEQL 49.987378 9.320551 AEQL 6.467964 1.643682 

 

Table 11: Comparison of the performance of the control charts on the FIMA(0.5,2) process modelled PTT PCL 

stock data. 

1 2,   

K1, K2 1,2 

1 2,   

K1, K2 0.5,0.7 

Model 
 1

tZ  
 2

tZ  model 
 1

tZ  
 2

tZ  

  5.29465 4.381600   7.1524 6.091234 

0.05,0.1 0.00 369.825 369.799 0.2,0.25 0.00 369.729 369.930 

0.01 329.1574 285.039 0.01 258.384 140.926 

0.02 250.762 167.334 0.02 107.375 62.845 

0.05 194.0284 105.022 0.05 86.225 28.014 

0.1 78.225 59.276 0.1 48.004 13.549 

0.2 47.177 16.883 0.2 18.332 5.212 

0.5 13.72834 8.228 0.5 6.035 2.892 

1 7.58423 4.729 1 2.993 1.429 

2 3.8764 2.012 2 1.824 1.287 

RMI 0.727 0.000 RMI 1.410 0.000 

AEQL 3.726 2.058 AEQL 1.662 0.969 
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Figure 5: ARL performance of DMEWMA and MEWMA Control charts on the EA PCL stock data under 

different conditions : (a)    1 2, 0.05,0.1    and    1 2, 1,2    and (b)    1 2, 0.1,0.2    and 

   1 2, 0.5,0.7   . 

 

 

0 0.01 0.02 0.05 0.1 0.2 0.5 1 2

MEWMA 370.006 357.296 345.391 313.9 272.667 218.138 153.104 130.901 54.5778

DMEWMA 369.959 348.986 329.583 279.446 216.584 138.768 52.442 20.208 8.166
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(a) ARL1 for IMA processes with (λ1 , λ2 ) = (0.05, 0.1)
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(b) ARL1 for IMA processes with (λ1 , λ2 ) = (0.1, 0.25)
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Figure 6: ARL performance of DMEWMA and MEWMA Control charts on the PTT PCL stock data under 

different conditions : (a)    1 2, 0.05,0.1    and    1 2, 1,2    and (b)    1 2, 0.1,0.2    and 

   1 2, 0.5,0.7   . 
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(a) ARL1 for IMA processes with (λ1 , λ2 ) = (0.05, 0.1)
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(b) ARL1 for IMA processes with (λ1 , λ2 ) = (0.1, 0.25)
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4 Conclusions 

 

The objective of this study was to improve control 

chart performance in identifying slight to moderate 

changes in the process mean of autocorrelated data, 

particularly data produced by IMA and FIMA 

processes with exponential white noise. The primary 

contribution lies in the development and analytical 

evaluation of the Double Modified Exponentially 

Weighted Moving Average (DMEWMA) control 

chart, which incorporates two smoothing parameters 

to increase sensitivity to subtle changes. By extending 

previous work on the MEWMA chart, this study 

proposed both an exact analytical ARL formula using 

Fredholm integral equations and a numerical 

approximation via the Numerical Integral Equation 

(NIE) technique to evaluate the performance of the 

DMEWMA chart. The theoretical development was 

validated through extensive simulation studies. The 

ARL values calculated from the proposed exact 

formulas were nearly identical to those obtained from 

the NIE technique, with accuracy levels consistently 

reaching 100% across all cases. Moreover, the 

DMEWMA control chart demonstrated significantly 

reduced computation time, making it a more efficient 

alternative, particularly in settings requiring real-time 

process monitoring. 

The performance analysis of the DMEWMA and 

MEWMA control charts under various process shift 

scenarios and smoothing parameter configurations 

further emphasized the advantages of the proposed 

method. In every case studied—both under IMA(1,1) 

and FIMA(0 .5 ,1 )  processes—the DMEWMA chart 

produced lower ARL₁  values, indicating quicker 

detection of out-of-control signals. This performance 

advantage became more pronounced as the size of the 

mean shift increased. Furthermore, evaluation using 

Relative Median Index (RMI) and Average Expected 

Quadratic Loss (AEQL) confirmed that the 

DMEWMA control chart maintained consistently 

lower values than the MEWMA chart, indicating 

superior overall efficiency and robustness. 

Real-data applications using EA PCL and PTT 

PCL stock data further reinforced the chart’s utility. 

The data were fitted to appropriate IMA and FIMA 

models, and the Kolmogorov–Smirnov test confirmed 

the exponential distribution of the residuals. In both 

datasets, the DMEWMA chart outperformed the 

MEWMA chart across all shift scenarios, delivering 

faster detection rates and better performance metrics. 

These empirical findings are consistent with those 

obtained from the simulation studies, thereby 

validating the theoretical claims in practical settings. 

Based on these results, the DMEWMA control 

chart is recommended for use in monitoring 

autocorrelated processes, especially where small 

changes need to be detected quickly and efficiently. It 

is particularly suitable for financial and industrial time 

series where long-memory behavior and non-normal 

residuals are present. Future research may explore its 

application to multivariate settings, other 

distributional assumptions, or adaptive parameter 

selection strategies to further enhance its performance 

in dynamic environments.  

In conclusion, the DMEWMA control chart 

provides a theoretically sound, computationally 

efficient, and practically applicable solution for 

monitoring complex time-dependent processes, 

outperforming existing methods in both accuracy and 

responsiveness. However, its complexity requires 

careful parameter selection and computational 

considerations. 
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