
235

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

A Framework for Web-based Data Visualization Using Google Charts Based on MVC
Pattern

Chanchai Supaartagorn*
Department of Mathematics Statistics and Computer, Faculty of Science, Ubon Ratchathani University, Warin
Chamrap, Ubon Ratchathani, Thailand

* Corresponding author. E-mail: chanchai.s@ubu.ac.th DOI: 10.14416/j.ijast.2016.11.002
Received: 23 May 2016; Accepted: 13 July 2016; Published online: 7 November 2016
© 2016 King Mongkut’s University of Technology North Bangkok. All Rights Reserved.

Abstract
Data is recognized as an important corporate asset. Organizations use data in planning and decision making.
However, data interpretation is the most important issue. In order to interpret the data clearly and efficiently,
data visualization concept helps people understand the significance of data by placing it in visual context. This
paper aims to provide a framework to create a web-based data visualization with Google Charts. The framework
was designed and developed based on MVC pattern. The MVC pattern is very useful for the architecture of web
applications, separating the model, view and controller of a web application. In addition, the framework also was
designed to connect a database that users can retrieve data from database to create web-based data visualiza-
tion. Through this experimental development, we use White-Box testing for the code verification in the model
module. Lastly, a web page example is shown to illustrate the process and result from the use of this framework.

Keywords: Data visualization, Google Charts, MVC

Please cite this article as: C. Supaartagorn, “A framework for web-based data visualization using google
charts based on MVC pattern,” KMUTNB Int J Appl Sci Technol, vol. 9, no. 4, pp. 235–241, Oct.–Dec. 2016.

Research Article

1 Introduction

Organizations today are beginning to realize the
important of data in achieving goals. Corporations
have increasingly come to realize that data are
important corporate assets. However, it is difficult to
interpret the data clearly and efficiently to users. The
concept of data visualization comes from visualization
in scientific computing. It can reflect the information
pattern, data relation, data change trend, and help
scientific researchers and government officers to view
and analyze data in the style of direct graphs to find
the principles hiding behind the data [1]. Not only does
data visualization help us communicate information
better, it also allows us to detect patterns, trends and
correlations in our businesses that might otherwise
go undetected [2]. Currently, there are several open
source tools that can help to create data visualization,

such as Google Charts, D3.js, FusionCharts, etc. Ying Zhu
has a survey of more than 20 data visualization courses
taught in North American universities [3]. The outcome
survey concluded that Google Charts tool was very
positive. There are many advantages such as stable, up-to-
date, cross-platform, flexible and versatile. According,
Krishna Sumanth [4], Google Charts are the basic and
simple tool for data visualization. It has a very easy-to-
use Application Programming Interface (API).
 Although, Google Charts is the ease for developers
to create data visualization. Developers use Google
Charts with simple JavaScript embedded in a web page.
However, in the case of retrieving data from database
to create Google Charts, most novice developers are
often troubled by SQL syntax. Indeed, several studies
suggest that traditional database query languages are
not very friendly to use, for novice users of database
technologies [5].

http://dx.doi.org/10.14416/j.ijast.2016.11.002

236

C. Supaartagorn / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

 One way to solve the problem is develop a
framework that is designed to support the development
of dynamic web pages. The framework connects and
integrates with Google Charts API. Web application
framework usually implements the Model View
Controller (MVC) design pattern. The MVC pattern is
a proven, effective way for the generation of organized
modular applications [6]. The MVC pattern breaks
an application into three modules: model, view and
controller. The model module contains the underlying
classes whose instances are to be used for manipulating
the database. Developers learn how to use each class
and what the output is, rather than on SQL syntax.
This advantage can reduce the syntax errors of SQL
commands. In addition, developers create the controller
module merely to handle the user events and create
the view module to render the appearance of the data
in the user interface. By decoupling the module, MVC
helps to reduce the complexity in architectural design
and to increase flexibility and reuse of code [7]. This
research will propose a Google Charts framework based
on MVC design model. The framework was developed
with PHP language that connects and integrates with
Google Charts API. Moreover, a MySQL was used
for database management system. In conclusion,
the research provides a framework to create a data
visualization with Google Charts, which will be an
effective separation of event handling, underlying
classes and user interface.
 The rest of this paper is organized as follows:
Section 2 describes the related works. Section 3 presents
the architecture of the framework. Section 4 discusses
the Model testing. Section 5 shows the examples of data

visualization based on the framework. Section 6 draws
the conclusions and proposals for future research.

2 Related Works

Data visualization is the presentation of data in the
style of graphs or images. It enables the viewer with a
qualitative understanding of the information contents.
In a business environment, data visualization can
help decision makers to see analyzed data presented
graphically, so the viewers can grasp difficult concepts
or identify new patterns. There are several data
visualization tools. We are providing the list of four
best data visualization tools: FusionCharts, D3.js,
Chart.js and Google Charts. Table 1 is a comparison of
which some features are available in each tool.
 FusionCharts support many chart types. In addition,
there are many options to customize a chart. However,
it is costly for commercial use. D3.js is a preferred
data visualization tool among developers, but DOM
manipulation very slow for large entry numbers. Chart.
js renders charts with the HTML5 canvas element.
Therefore, user need to include a polyfill to support
older browsers, like ExplorerCanvas. We decide to
use Google Charts for designing and developing
a framework because it is free for all usage. Moreover,
charts rendering in both Scalable Vector Graphics
(SVG) and Vector Markup Language (VML). Overall,
Google Charts is a good choice for those who want
simple and basic graphs without wasting time for
learning.
 Google Charts is one of the most widely used for
data visualization. The advantages of Google Charts are

Table 1: Comparison of data visualization tools, adapted from [8], [9]
Visualization Tool Summary Licensing Charts Rendered in Chart Types Documentation
FusionCharts Delightful JavaScript

charts for and mobile
application

Free for personal and
non-commercial use.
Paid for commercial
applications.

JavaScript (HTML5)
Charts using SVG and
VML

15 

D3.js Powerful JavaScript
library for maipulating
documents based on
data

BSD-3 SVG 9 

Chart.js Easy, object oriented
client side graphs
for designers and
developers

Free under MIT license Canvas based charts 6 

Google Charts Display live data on
your site

Free for all usage. HTML 5 charts using
SVG and VML

9 

237

C. Supaartagorn / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

powerful, simple to use, and free of charge. There are
several researches that use Google Charts. For example,
biometric system [10] that relies on measurable
physical characteristics that can be automatically
checked which is called u-RPMS (USN Remote
Patient Monitoring System). The system receives and
monitors biometric information of patients in real-time.
The system implementation has used Google Charts
API which can express graph with diverse colors and
shapes. General users can easily understand patient’s
biometric information using the smart mobile devices.
Data mining research [11] that proposed a service
oriented framework (SO-MSR) for conducting the MSR
(Mining Software Repositories). The MSR is an active
research area that utilizes data mining techniques
to software projects’ historical data in order to gain
a better understanding of the software development
[12]. This research has developed a consumer mashup
application, named MetricViewer, which integrates
MetricsWebAPI for metrics calculation and Google
Chart Tools for metrics visualization. The visualization
process flow starts from the MetricsViewer invokes the
MetricsWebAPI. Then, the MetricsWebAPI invokes
the Google Chart Tools, which visualizes software
evolution as a graph object from a source control
system repository.
 For creating Google Charts [13], there are four
steps are as follows:
1) Load the Libraries. Google Charts consist of
codes for libraries loading. Firstly, loading the AJAX
API. Secondly, loading the visualization API and the
corechart package. Finally, setting a callback to run
when the Google Visualization API is loaded. All steps
must be included in the <head> of the web page.
2) Prepare the Data. This step is creates a data table.
Google Charts require data to be wrapped in a
JavaScript class called google.visualization.DataTable.
This class is defined in the Google Visualization library.
The data object is created to call the addColumn()
method and addRows() method.
3) Customize the Chart. Every chart has many
customizable options, including title, colors, line
thickness, background fill, and so on. All customize
options are defined in the options variable.
4) Draw the Chart. First Google Charts must instantiate
an instance of the chart class, and then call the draw()
method that takes two values: a DataTable object, and
an optional chart options object. Google Charts will be

drawn in a division or a section of HTML document that
was assigned with HTML element (typically a <div>).
 Figure 1 is a summary of the process and steps
to create Google Charts.
 Then, we reviewed the concepts of MVC pattern
that will be used for creating Google Charts framework.
The MVC pattern breaks an application into three
modules: model, view and controller. Figure 2 illustrates
the framework of MVC pattern.
 The operation a process of the framework can
be broken down into six steps. Following these steps
show the workflow of the framework.
1) A user sends a request to the controller.
2) The controller analyses the request and calls the
model (method in the class).
3) The model will perform the necessary business logic
and connect the database.
4) The model transmits the result to the controller.
5) The controller forwards the request to the view.
6) The request is complete when the result responds
to the user.

Figure 1: Steps of creating Google Charts.

1

2

3

4

<!--Load the AJAX API-->
<script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script>
<script type="text/javascript">

google.charts.load('current', {'packages':['corechart']});

google.charts.setOnLoadCallback(drawChart);

var data = new google.visualization.DataTable();
data.addColumn('string', 'Topping');
data.addColumn('number', 'Slices');
data.addRows([
 ['Mushrooms', 3],
 ['Onions', 1],
 ['Olives', 1],
 ['Zucchini', 1],
 ['Pepperoni', 2]
]);

 var options = {'title':'How Much Pizza I Ate Last Night',
 'width':400,
 'height':300};

 }
 </script>
</head>

 <body>
 <!--Div that will hold the pie chart-->
 <div id="chart_div"></div>

function drawChart() {

<html>
 <head>

 </body>
</html>

 var chart = new google.visualization.PieChart(document.getElementById('chart_div'));
chart.draw(data, options);

238

C. Supaartagorn / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

3 Architecture of the Framework

The architecture and process flow of the web-based
data visualization with Google Charts is shown in
Figure 3.
The process flow is shown as follows.
Step 1: A user sends a request to the controller that
contains codes to handle the user actions and invokes
changes in the model.
Step 2: The controller analyses the request and calls
the model. There are two classes in the model module:
connecDB class and GoogleCharts class. The connectDB
class is a superclass or parent class. There are three attributes
(Host, UserName and Password) and two methods
(connectDB() and selectDB()). The connectDB() method
is the constructor that automatically executes at the

time of object instantiation. It is used to initialize the
host name attribute, user name attribute and password
attribute. The selectDB() method is used to connect the
hosting and to select the database. The Google Charts
class is a subclass or child class that inherits from the
connectDB class. There are six methods: The select()
method is the constructor that initializes the table name
for select statement. The Load_ChartLibraly() method,
Initial_Data() method, Customize_Chart() method and
Draw_Chart() method are based on creating Google
Charts four steps. In addition, the Initial_MutipleData()
method is used for fetching data from multiple tables.
The class diagram of the model module is shown in
Figure 4.
Step 3: The model invokes graph generation API
provided by Google Chart Tools. After that, the Google
Chart Tools returns graph objects.
Step 4: The model is connected to the database and
return data back in the form of an array variable.
Step 5: The model returns the result back to the controller.
The controller prepares data in the form of variable.
Step 6: The controller forwards the request to the view.
The view uses the command to display the data that
sends it via variables.
Step 7: The view generates a visualization html page
to the user.

Figure 2: Framework of MVC pattern.

Figure 3: Architecture and process flow of the framework.

Figure 4: Class diagram showing the model module.

User

Controller View

Model Database

 1

 2 4
 3

 5
 6

4. Connect
the database

Controller View

connecDB

Model

2. Call
the Model

5. Transmit
the result

6. Forward
the request

1. Send
request

7. Result
response

User

3. Call graph
generation API

GoogleCharts

Google Chart
Tools

Database

connectDB

Host
UserName
Password

connectDB(Host, UserName, Password)
selectDB(db)

GoogleCharts

Select(table)
Load_ChartLibrary(DataName)
Initial_Data(field, condition)
Initial_MultipleData(field, condition)
Customize_Chart(title, color, size)
Draw_Chart(ChartType)

239

C. Supaartagorn / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

4 The Solution for Model Testing

We will use White-Box testing to analyze code in the
model module. The White-Box testing can examine the
design documents and the code as well as observing
algorithms and their internal data [14]. Brach/Decision
coverage technique is one of several techniques for
White-Box testing. This testing aims to ensure that
each possible branch from each decision point is
executed at least once. We will show the example of
Initial_Data() method to test the quality of the software
as follows.

public function Initial_Data($field, $condition='')
{
 if ($condition == '') {
 $sql = "Select * From ".$this->table[0];
 }
 else {
 $sql = "Select * From ".$this->table[0]." Where
".$condition;
 }
 $sql = $sql.";";
 $query = mysql_query($sql);
 $num = mysql_num_rows($query);
 for($i=0;$i<count($field);$i++) {
 $query = mysql_query($sql);
 for ($j = 0; $j<$num; $j++) {
 $result = mysql_fetch_array($query);
 $data[$i][$j] = $result[$field[$i]];
 }
 }
 return $data;
}
 To help do this systematically, we will draw a
control flow graph of the code as shown in Figure 5.
 This graph has a shade node representing the
three decisions (A, B and C) where the code can make
the five branches (1, 2, 3, 4 and 5). We create a finance
database and financial_summary table for this testing.
The details of the table are shown in Table 2.

Table 2: The details of financial_summary table
Finance_id Year Revenue Expense

1 2012 1000 800
2 2013 1170 460
3 2014 680 1120
4 2015 1030 540

 We devised a test case to make sure that every
decision and branch was taken. The following tests in
Table 3 ensure branch/decision coverage.

Table 3: Test case of Initial_Data() method
Test
Case $field $condition $data Decision Braanch

1 array("year",
"revenue",
"expense")

Null array(
array(2012,1000,800),
array(2013,1170,460),
array(2014,680,1120),
array(2015,1030,540),
)

A, B, C 1,3,4,5

2 array("year",
"revenue",
"expense")

year=2015 array(
array(2015,1030,540)
)

A, B, C 1,2,3,4,5

 From the above test case, we can conclude 100%
decision coverage and 100% branch coverage. We
have used the same testing with the rest of the method.
All reachable codes in the method are executed
respectively.

5 The Examples of Data Visualization

In this section, we show examples of a web page that
was created from the framework. The database is
related to financial data. The codes are examples of
the controller module and view module respectively.

Figure 5: The control flow graph of Initial_Data()
method.

Start

F

F F

if($condition==")

T

T

T

1

5

3 4

2

for($i=0;$i<count($field);$i++)

for($j = 0;$j<$num;$j++)
C

Stop

A

B

240

C. Supaartagorn / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

Financial_controller.php
<?php
function __autoload($class_name) {
require_once "../class/".$class_name . '_class.php';
}
$connectdb = new connectDB('localhost','root','');
$connectdb->selectDB("finance");
$table = array("financial_summery");
$select_obj = new select($table);

$DataName = array('Year', 'Revenue', 'Expense');
$graphlibrary =
 $select_obj->Load_ChartLibrary($DataName);

$condition = "";
$field = array("year","revenue","expense");
$prepare_data =
$select_obj->Initial_Data($field, $condition);

$title = array('Financial Data','Year','Total (Million
Baht)');
$color = array('Purple','Orange');
$size = array('700','500');
$customize_data =
 $select_obj->Customize_Chart($title, $color, $size);

$charttype = "ColumnChart";
$draw_data=$select_obj->Draw_chart($charttype);
?>

Financial_view.php
<?php
 require_once "../controller/financial_controller.php";
 echo "<h1>Financial Data Graph</h1>";
 echo $graphlibrary;

 for($i=0;$i<=3;$i++) {
 echo "['".$prepare_data[0][$i]."',";
 echo $prepare_data[1][$i].","
.$prepare_data[2][$i];
 echo "],";
 }
 echo $customize_data;

 echo $draw_data;
?>
 <div class="chart_div " id="chart_div"></div>

 A screenshot of financial web page with Google
Charts based on MVC pattern is shown in Figure 6.

6 Conclusion

To make it easier to develop web-based data visualization
with Google Charts, we have designed and developed
the framework based on MVC pattern. It prepares the
basic methods and clarity in the accomplishment of the
design of the framework. Developers can create web
pages which connect and integrate with Google Charts
API for visualizing data from a database. In addition,
we use the White-Box testing to examine the model
module in order to guarantee the web page quality.
In addition, we show an example of web page that is
created from the framework.
 In our future work, we will continue to develop the
Google Charts creator that is embedded the framework
in the system. A developer will be able to create web-
based data visualization with Google Charts easily and
quickly. Additionally, comparative empirical evaluation
with other existing tools must be conducted.

References

[1] Z. Liang, W. Bing-fang, Z. Yue-min, M. Xin-hui,
and Y. Lei-dong, “Research on eco-environmental
data visualization for three gorges project,”
in Proceedings International Symposium
on Information Engineering and Electronic
Commerce, 2009, pp. 590–593.

[2] B. Martinuzzi. (2016, Apr.). Data visualization
will change the way you think about your

Figure 6: A screenshot of financial web page.

1,200
Financial Data

 Revenue
 Expense

Financial Data Graph

900

600

300

0
2012 2013 2014

Year

To
ta

l (
M

ill
io

n
Ba

ht
)

2015

241

C. Supaartagorn / KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp. 235–241, 2016

business [Online]. Available: https://www.
americanexpress.com/us/small-business/open
forum/articles/data-visualization-will-change-
the-way-you-think-about-your-business

[3] Y. Zhu, “Introducing google chart tools and
google maps api in data visualization courses,”
IEEE Computer Graphics and Applications,
vol. 32, no. 6, pp. 6–9, Nov. 2012.

[4] K. Sumanth. (2016, Apr.). D3.js vs Google Charts:
A data scientist’s review [Online]. Avaiable:
https://blog.socialcops.com/engineering/d3-js-
versus-google-charts

[5] L. Avensano, G. Canfora, A. De Lucia, and S.
Stefanucci, “Understanding SQL through iconic
interfaces,” in Proceedings Computer Software
and Applications, 2002, pp. 703–708.

[6] C. Hofmeister, R. L. Nord, and D. Soni, Applied
Software Architecture. Addison-Wesley, 2000.

[7] W. Cui, L. Huang, L. J. Liang, and J. Li,
“Theresearch of PHP development framework
based on MVC pattern,” in Proceedings Fourth
International Conference on Computer Sciences
and Convergence Information Technology, Seoul,
South Korea, 2009, pp. 947–949.

[8] Wikipedia. (2016, Jul.). Comparison of JavaScrip
charting frameworks [Online]. Avaiable:
https://en.m.wikipedia.org/wiki/Comparison_of_
JavaScript_charting_frameworks

[9] EDUCBA. (2016, May.). Top 10 best data

visualization tools (Essential) [Online]. Avaiable:
https://www.educba.com/10-best-data-visualization-
tools/

[10] L. Jae-Gwang, K. Young-Hyuk, L. II-Kwon,
L. Jae-Pil, H. Namgung, and L. Jae-Kwang,
“Implementation of u-RPMS using Google
Chart in hybrid application for visualization of
patient’s biometric information,” in Proceedings
International Conference on Information Science
and Applications, Pattaya, Thailand, 2013, pp. 1–4.

[11] Y. Sakamoto, S. Matsumoto, and M. Nakamura,
“Integrating service oriented MSR framework
and Google Chart tools for visualizing software
evolution,” in Proceedings Fourth International
Workshop on Empirical Software Engineering in
Practice, Osaka, Japan, 2012, pp. 35–39.

[12] Sunday O. Olatunji, Syed U. Idrees, Yasser
S. Al-Ghamdi, and Jarallah Ali Al-Ghamdi,
“Mining software respositories–a comparative
analysis,” International Journal of Computer
Science and Network Security, vol. 10, no.8,
pp. 161–174, 2010.

[13] Google Developers, Using Google Charts.
(2016, Apr.). [Online]. Avaiable: https://google-
developers.appspot.com/chart/interactive/
docs/

[14] C. Timothy and L. Robert, Object-Oriented
Software Engineering. New York: McGraw-Hill.
2005.

