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Abstract
A tubular photobioreactor is one of the most effective methods of microalgae cultivation because of the high 
solar receiver area and better biomass productivity. However, the pressure drop along the tubular solar receiver 
induces a relatively high dead zone. An optimal design is necessary to maximize biomass productivity. In this 
article, the proposed model can reduce the dead zone by up to 15% under a pressure drop of 106 Pa. To optimize  
the area requirement, three configurations with different stacking angles of 30, 45, and 60°, are simulated. The 
optimal 60° stacked-layer model is then connected to an airlift device to demonstrate the complete system. This 
model can circulate seawater inside the reactor at an average velocity of 0.188 m/s with 0.07 m/s of air inlet 
velocity. The radial flow can force the microalgae from the inner part of the tube to the outer part and back again 
throughout the entire stacked section. This turbulence will enhance biomass productivity because the microalgae 
are moved from the darker interior of the tube to the periphery where they are exposed to solar radiation. The 
optimal stacked-layer tubular photobioreactor has a slope of 60° with four stacked layers. This modification 
promotes the circulation of microalgae in both axial and radial directions.
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1 Introduction

Algae are used by humans in many ways: as a food 
source, for water treatment, and as an indicator to 
study environmental change. Microalgae are also 
used commercially in pharmaceuticals and cosmetics,  
and for aquaculture purposes [1]. In addition,  

microalgae have been demonstrated to be a source of 
biodiesel, a fuel which can potentially replace the less 
environmentally friendly petroleum diesel. Moreover, 
microalgae consume carbon dioxide (CO2) as a carbon 
source. Thus, biodiesel production from microalgae 
will not contribute to global warming by excessive 
release of CO2 [2]–[4]. Therefore, designing efficient 
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microalgae cultivation systems is an area of ongoing 
research. There are two types of algae cultivation  
systems: open and closed. The common open system  
includes large ponds, tanks, circular ponds and raceway  
ponds. However, their limitations include a large area 
requirement, high evaporative losses, greater risk of 
contamination, and inefficient light utilization by algal  
cells [2], [5], [6]. A tubular photobioreactor, as a closed  
system, can promote better control of the culture  
environment, including carbon dioxide supply,  
evaporation loss, microbial contamination, and land 
use. The ideal tubular photobioreactor design should be 
able to efficiently collect solar radiation in a compact 
land area, while minimizing the pressure drop and the 
dead zone [7]–[12]. This study focuses on the design 
of a tubular photobioreactor to reduce pressure drop, 
dead zone and area demand, while preserving the 
turbulent flow. The flow behavior inside the tubular 
photobioreactor is simulated by a computational fluid 
dynamics (CFD) method, which serves as an efficient  
tool to fulfill the objectives of the experiment [13],  
[14].

2 Methodology

The conventional  model of a tubular photobioreactor 
is assessed in order to determine the velocity profile 
of microalgae and water, the dead zone formation, the 
pressure drop along the solar receiver, and the area 
requirement. The length of the tubular photobioreactor 
is limited by the oxygen concentration. At the lowest 
flow velocity of 0.17 m/s, the tubular photobioreactor  
should not exceed 80 m because at this length the 
dissolved oxygen concentration peaks at 300% of 
air saturation [9]. Therefore, the length of the basic 
model of a tubular photobioreactor in this study is  
appoximately 40 m, which is sufficient for the  
purposed performance and the acceptable oxygen 
concentration. This basic model consists of a single-
layer solar receiver loop with a diameter of 0.1 m and  
length of 10 m, with a radius of curvature of the U-bend  
of 0.35 m and horizontal spacing of 0.1 m. Figure 1 
depicts the three U-bends and four straight tubes. 

A two-phases model of seawater and microalgae  
cells is simulated in this study. The cell density of 
microalgae is approximately 100 × 106 cells/ml, 
with cell diameter of 10 µm [15]. Hence, the volume 
fraction of microalgae would be 0.05 and the density  

of seawater is 1,020 kg/m3 [16]. The density of microalgae  
is approximately 1,300 kg/m3. A Eulerian multiphase 
model is selected to treat the microalgae cells as  
continuous phase. The viscosity of seawater and  
microalgae can then be assumed as 1.003 × 10-3 kg/(ms).  
Two boundary conditions are used in the simulation:  
inlet and outlet boundaries. At the inlet boundary, the flow  
velocity of water and microalgae phase is 0.17 m/s. 
The volume fraction of microalgae at the inlet is 0.05, 
which is assumed to be the inside concentration. At 
the outlet boundary, the pressure is set at atmospheric 
pressure. 

The bend configuration of each is modified by 
increasing the curvature radius, the angle of curvature 
and the spacing between adjacent tubes to 0.35 m, 
210°, and 0.4 m ; respectively. This modification aims 
to reduce the dead zone formation and the pressure 
drop along the tubular photobioreactor.

Next, the modified model is stacked up to four 
layers. Three models are simulated, with various slopes 
relative to the horizontal plane: 30, 45 and 60°, as 
shown in Figure 2. The length of each straight tube can 
be decreased in order to reduce the area requirement. 

Finally, the simulation results of 30, 45 and 60° 
tubular photobioreactors are compared in order to  
determine the minimum pressure drop and area  
requirement. Then the optimal model is attached to an 
airlift device to establish a complete system. As shown 
in Figure 3, the airlift system consists of three parts: the 
riser, the gas separator and the downcomer. The riser 
is a vertical tube with a diameter of 0.1 m (the same 
as the solar receiver), and the height is 2 m. The width 
and length of the gas separator are 0.1 m and 0.9 m, 
respectively [17], [18].

Figure 1: Basic model tubular photobioreactor with  
3 U-bends.
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The heights of the two sides of the gas separator 
are different: one side is 2 m and the other is 3.56 m. 
Hence, the bottom of the gas separator is sloped at 60° 
in relation to the horizontal plane in order to prevent 
the microalgae accumulation [9], [19]. The downcomer 
consists of a 0.78 m sloped tube connected to the gas 
separator with a 0.05 m elbow, and connected to the 
solar receiver with two 0.1 m elbows. Technically, 
there is a hole at the bottom of the riser feeding the 
air to circulate the system. The model is simulated 
by two-phase assumption: air and seawater. At the 
inlet boundary, air velocity is set to 0.07 m/s and the 
pressure is atmospheric pressure [17]. All simulations 
are performed by a cluster computer with 64 modes 
and CFD software (Fluent; ANSYS, Canonsburg PA, 
USA).

3 Results and Discussion

A dead zone developed in the basic model, especially at 
the U-bend. Modification was proposed by utilizing a 
total tube length of 43.27 m and an area requirement of 
17.28 m2. The dead zone can be reduced by modifying  
the bend of the solar receiver loop. However, some 
dead zone still occurs at the joint of the bend and the 
straight tube. The dead zone can be reduced to 15.09%.

The modified model of a tubular photobioreactor 
not only decreases the dead zone but also decreases 
the pressure drop along the solar receiver to 105.6 Pa. 
This is in terms of energy consumption. According 
to the modified model tubular photobioreactor, the 
modification of bends can reduce the dead zone and the 
pressure drop. Therefore, the tubular photobioreactor 
can be stacked up to four layers in order to reduce the 
area requirement. The area requirement of 30, 45 and 
60° model tubular photobioreactors is approximately 
5.8, 4.7, and 3.3 m2 ; respectively All three models are 
used to study the effect of the angle on the dead zone 
and pressure drop. Figure 4 shows the microalgae fluid 
velocity profile for the 30, 45 and 60° stacked-layer 
models of a tubular photobioreactor. 

The dead zone and pressure drop of 30, 45 and 
60° models are similarly developed. The dead zone 
can be calculated as shown in Figure 5. The dead 
zone of the 30, 45 and 60° models are 15.76, 15.69, 
and 15.71%, respectively. Therefore, the slopes of the 
stacked layers of the tubular photobioreactor have no 
significant effect on the dead zone. In addition, the 

Figure 2: Stacked-layer tubular photobioreactors.

 

Figure 3: 60º stacked-layer tubular photobioreactor 
with airlift system.
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pressure drop along the solar receiver loop is 106.79, 
51.36 and 10.59 Pa, respectively as shown in Figure 6.  
Therefore, the incremental slopes of each layer result 
dramatically the lower pressure drop. The greater 
turbulence can enhance the possibility of driving  
microalgae to the periphery of the transparent tube to 
be exposed to the maximum sunlight. A comparison  
of the three proposed models shows that the 60° 
stacked-layer model can give the best performance, 
since it provides the lowest pressure drop and requires 
the lowest area. Consequently, this model is chosen 

Figure 4: Microalgae fluid velocity profiles for  
the upper layer 30, 45 and 60° stacked-layer tubular 
photobioreactors.

Figure 6: Comparison of Consumption area (m2)  
Percentage of Dead zone and Pressure drop (Pa) within 
stacked-layer model tubular photobioreactors. 

Figure 5: Percentage of microalgae in region of different  
volume fraction within stacked-layer model tubular 
photobioreactors.
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for assembly with an airlift system in order to study 
the flow behavior inside the tubular photobioreactor.  
Figure 7 shows the seawater velocity profile of the  
upper layer of the 60° stacked-layer model assembled  
with an airlift system. At an air inlet velocity of 0.07 m/s,  
the average seawater velocity is 0.19 m/s, with a 
Reynolds number of 19,686. The flow inside the  
tubular photobioreactor creates turbulence behavior. A 
swirling flow is also developed that can move the algae 
in and out in a radial direction as shown in Figure 8.  

4 Conclusions 

The objective of this study is to improve the basic 
tubular photobiorector in order to minimize the dead 
zone, reduce area demand and reduce pressure loss. 
The tubular photobioreactor geometry is prepared  
using CAD software and imported to Fluent software 
to simulate the flow behavior. The results show a dead 
zone around the U-bend of 25.86% (7.21 m2), while 
the pressure drop along the solar receiver is 120 Pa. 
The U-bend is then modified by increasing the radius 
of curvature to 0.35 m and the angle of curvature from 
180° to 210°. 

The dead zone is thereby reduced to 15.06% and 
the pressure drop is reduced to 105.6 Pa. However, 
the area requirement actually increases to 17.28 m2. 
Therefore, the solar receiver loop must be reconfigured  
to achieve the optimal configuration. The model is 
stacked up to four layers to reduce the area requirement.  
Three models of stacked-layer tubular photobioreactors  
are proposed. The 60° stacked-layer model can exhibit  
the best performance by minimizing the pressure 
drop to 10.59 Pa and the area requirement to 3.34 m2. 
Moreover, the dead zone (15.71%) is not significantly 
increased. The 60° stacked-layer model consists of one 
5 m tube and seven 4.17 m tubes which are stacked in 
up to four layers. The bend of each layer is modified 
by increasing the radius and the angle of curvature to 
0.35 m and 210°, respectively. In addition, each layer 
is sloped at 60° to the horizontal plane. 

Finally, the 60° stacked-layer model is assembled 
with an airlift system in order to study the flow behavior  
and demonstrate the full-scaled system. According to 
the simulation result, the average seawater velocity is 
equal to 0.19 m/s which ensures the turbulent flow at 
an air inlet velocity of 0.07 m/s. Therefore, it can be 
concluded that the 60° stacked-layer model with an 
airlift system is practically the optimal prototype of 
tubular photobioreactor.
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stacked layers model of tubular photobioreactor (First 
layer).
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