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Abstract
Higher-order three-dimensional solid elements are widely used for machine design and structural analyses. 
Although higher-order solid elements offer higher accuracy, the assembly routines often consume large 
amount of computational time and memory usage. In contrast, lower-order solid elements such as an 8-nod are  
simpler in programming implementation and consume less computational resources. However, they can produce 
problems of locking phenomena e.g. membrane and shear locking. Moreover, in a three-dimensional analysis 
using continuum solid elements, it is necessary to consider the stresses in the through-thickness direction, for 
example, in layered soil and foundation. This research aims to develop a modified strain-displacement finite 
element formulation that eliminates locking problems and generally applicable to both thick and thin three-
dimensional structures. The proposed formulation is based on the key concept of energy equivalence mapped 
between the global and natural curvilinear coordinates. The advantage of the proposed method is the ability 
to select a set of chosen strain functions that can be defined arbitrarily on the natural curvilinear coordinates. 
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1 Introduction

Solid elements are widely used in a variety of finite 
element models for engineering structures such as  
machine parts and arch dams [1], thanks to their versatile  
properties. For analyses that require high accuracy, 
high-order solid elements are favorable. However, 
the use of high-order solid elements demands more 
computational consumption than the low-order solid 
elements. Thus, in past decades many researchers’ 
efforts have been devoted to the improvement of 
lower-order solid elements with enhanced accuracy 

and free form locking phenomena such as shear and 
membrane locking.
 To obtain locking-free and high accuracy low-
order solid elements, additional special techniques 
or methods are required, such as the pioneer works 
on the assumed hybrid stress (Hybrid) and enhanced 
assumed strain (EAS) method. The assumed hybrid 
stress method was originally developed by Pian and 
Sumihara [2]. Later, enhanced assumed strain method 
was derived and developed by Simo and Rifai [3]. The 
aim of these approaches is to improve computational 
efficiency of the low-order solid elements, replacing 
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the use of higher-order solid elements. 
 The assumed hybrid stress method was derived 
from Hellinger-Reissner (HR) principle [2] with  
assumed physical stresses, whereas enhanced  
assumed strain method was derived from Hu-Washizu 
(HW) principle [3] with enhanced strain fields. The 
EAS and Hybrid method are based on the covariant and 
contravariant base vectors of the natural curvilinear  
transformation. An alternative approach, the assumed  
strain quasi-conforming element, was firstly  
demonstrated in the work of Tang et al. [4].
 The assumed functions are related to the string 
functions which are chosen multiple sets of piece-
wise functions that conform to the conditions along 
the element boundaries associated with appropriate 
strain fields. This allows the use of surface integration 
to provide explicit coefficients of the element stiffness 
matrix.
 Ko and Bathe [5] proposed the assumed strain  
finite element formulation based on covariant base vectors  
known as 3D-MITC8 element. High performance and 
accuracy can be achieved. The element formulation  
is implicitly evaluated by employing a numerical  
integration inside the element volume and applicable 
in solving nonlinear problems. 
 Recently, Wang and Shi [6] proposed a finite 
element formulation based on assumed strain quasi- 
conforming solid element with explicit element stiffness  
that offers enhanced computational accuracy and 
efficiency. The volume integrations are evaluated at 
sub-domain and surface of the boundaries without 
using numerical integration points. 
 The development of high-performance solid  
element is still in progress. The purpose of this research 
thus aims to develop a highly accurate implicit solid-
shell finite element, based on a new concept of modified  
strain-displacement method that can be applied to 
general analyses of solid structures.

2 Formulation of Modified Strain-displacement 
Finite Element  

In general, a standard isoparametric solid element is 
referred to a natural curvilinear system (ξ, η, ζ) which 
can be related to a global coordinate system (x, y, z) 
through mapping. 
 The computational integration of the element 
stiffness can be achieved by numerical integration  

using sampling integration points as shown in Figure 1.  
The internal and external virtual energy corresponding  
to external applied loading are denoted by  and 

 respectively as shown in Equations (1) and (2): 

 (1)

 (2)

where σij and εij are the Cauchy stress and Euler strain 
tensor under the current volume, dv, and the current 
surface, ds. In which, the body and traction vectors 
are described by bi and ti that evaluated at the current 
equilibrium configuration. 
 Equation (1) can be equivalently expressed using 
the 2nd Piola-Kirchhoff stress Sij and Green-Lagrange 
strain tensor Eij, [7], [8]. The work conjugate at the 
undeformed configuration (Xi) can be achieved as 
follows

 (3)

 It is convenient and useful to present the formulation  
in the natural curvilinear system without loss of the 
generality using the work conjugacy based on the 
natural curvilinear system. 
 These relationships of the 2nd Piola-Kirchhoff 
stress and Green-Lagrange strain tensor referred to the 
natural curvilinear and global system can be expressed 
as

 (4)

Figure 1: A standard isoparametric element in natural 
curvilinear and global coordinates.
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 (5)

where  is the 2nd Piola-Kirchhoff stress tensor and 
 is and Green-Lagrange strain tensor referred to the 

natural curvilinear system.
 Substituting Equations (4) and (5) into Equation (3),  
the virtual energy system of the 2nd Piola-Kirchhoff  
stress and Green-Lagrange strain tensor defined in the 
natural curvilinear system can be expressed as follows:

 (6)

 Equation (6) is given by the work of  Pornpeerakeat  
et al. [9] and leads to the key development of a modified  
strain-displacement method used in this work. 
By definitions of Equation (4), the stress tensor  
transformations between the natural curvilinear system 
and global coordinate system can be represented in the 
following matrix as follows:

 (7)

where Jacobian coefficients (jab) of the transformation 
matrix are as in Equation (8):

 (8)

 Therefore, the transformation matrix can be 
evaluated at the centroid of the element in the natural 
curvilinear coordinates as  [3]. 
The stress tensor in global system can be related to the 
stress tensor in natural curvilinear system as:

 (9)

Thus, this work has chosen the assumed function with 
the stress continuity, instead of strain continuity [6], 
within an element domain as follows

 (10)

Thus,  where C is the isotropic elastic 

constitutive material tensor and Δe is the linear strain 
tensor. In this work, independence of material relations 
is now considered in the assumed function according to 
reductions of matrix operation and avoids the material 
relations in the assumed fields. Hence, C ≡ I = Diag(1, 
6×6) and , this expression yields

 (11)

where  and P are the assumed strain fields in a 
column vector and the chosen strain interpolation 
functions matrix respectively, Δα is undetermined 
strain parameters. The ΔU and B are the displacement 
vectors {Δu, Δv, Δw}T and linear strain-displacement 
relations expressed in a column vector and a matrix 
respectively. The chosen modified strain interpolation 
functions (P) can be related to the natural curvilinear 
coordinates and defined in covariant components of 
the transformation, using Equations (7), (9), and (10), 
as shown in Equation (12)

 (12)

Where [Equation (13)]

 (13)

 The optimum assumed strain interpolation  
functions ( ) is chosen for the continuum solid-shell  
element and (W) is the test function. Thus, Equation (10)  
becomes Equation (14):  

 (14)

The test functions are taken as W = PTΔα, then the 
undetermined strain parameters (Δα) can be derived as

 (15)

where  and  

 Equation (15) can be evaluated by the numerical 
integration. Hence, the matrix (B) in Equation (11) 
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is then replaced by the modified strain-displacement 
matrix ( ). Equation (11) can be rewritten as Equation 
(16)

 (16)

 The strain-displacement relations can be  
re-expressed as [Equation (17)]:

 (17)

 Thus, the matrix ( ) can be computed by a traditional  
integration procedure resulting in the standard element 
stiffness matrix (K) 

 (18)

 In Equation (18), we use 2×2×2 Gauss integration 
over the volume of the proposed element.

3 Numerical Examples

The proposed continuum solid-shell element, named 
XSOLID8MSD has been developed and implemented 
at King Mongkut’s University of Technology North 
Bangkok and the numerical tests are carried out using 
XFINAS.
 XFINAS developed at the Asian Institute of  
Technology and Konkuk University, is an extended 
version of the nonlinear finite element package FINAS, 
developed at the Imperial College, London. It can 
run on a personal computer with the pre- and post-
processor software GiD developed by CIMNE [10] 
in Spain. The list of solid and shell elements used for 
comparisons with the proposed elements is outlined in 
Table 1. The performance of the element was evaluated 
by selecting several discriminating problems from the 
well-known various numerical tests.

3.1  Cook’s cantilever beam problem

The Cook’s cantilever beam problem is used to evaluate  
the proposed element XSOLID8MSD. A trapezoidal 
clamped beam with a unit load at the tip end is modelled  
in this problem. The beam is under both complex 
bending and shear. NxN meshes are used in the slightly 
tapered beam model as shown in Figure 2. 

Table 1: List of solid and shell elements used for 
comparisons

Element Description
XSOLID8MSD An 8-node modified strain-displacement 

(MSD) continuum solid element, present 
formulation

3D-MITC8 The new 3D solid element based on covariant 
base vectors proposed by Ko and Bathe [5]

XSHELL42 A four-node quasi-conforming co-rotational 
shell element with 6 degrees of freedom Kim 
et al. [11]

Felippa et al. An eight-node solid-shell corotational element  
based ANDES, ANS and EAS formulation 
proposed by Felippa et al. [12]

Simo et al. Bilinear shell element with exact geometrical 
descriptions, mixed formulations used for the 
membrane and bending stresses. 2×2 Gaussian 
integration is used [13]

 Figure 3 shows the contour plot of the vertical  
displacements obtained from the model with the  
proposed element formulation. 
 The vertical displacement at point C in Figure 2 of 
23.91 given by Simo et al. [13] is used as the benchmark  
and  the comparisons of the  mesh convergence results 
obtained from different element formulations are plotted  
in Figure 4. 
 When the structure is modelled using finer 
meshes, the proposed element formulation shows a 
good agreement with the references. It is also important  
to mention that no locking effects under complex 
responses are observed. 

Figure 2: Cook’s cantilever beam problem.
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3.2  Scordelis-Lo shell problem

A short cylinder namely “Scordelis-Lo roof” supported 
by rigid diaphragms at the end of both edges is used 
in this problem. Gravitational loading is acted on the 
structure to provide a complex membrane dominated 
problem. The Scordelis-Lo shell under self-weight and 
properties are shown in Figure 5. One quarter is used 
to model in this problem with the varying mesh size.
 A solution of vertical deflection at the point A in 
Figure 5, w = 0.3024 mm given by MacNeal [14] is 
used as the benchmark. Figure 6 shows the contour plot 
of the vertical displacements obtained from the model 
with the proposed element formulation. The results of 
the displacement at point A and the comparisons of 

the  mesh convergence results obtained from different 
element formulations are plotted in Figure 7. 
 It can be seen that the proposed formulation 
shows a good agreement with the references results 
without locking phenomena.

4 Conclusions

The proposed solid element was developed based 
on the modified strain-displacement formulation. 

Figure 3: Deformation of Cook’s cantilever beam 
problem.

Figure 4: Convergence with mesh refinement.

Figure 5: Scordelis-Lo shell.

Figure 6: Deformation of Scordelis-Lo shell problem.

Figure 7: Convergence with mesh refinement.
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The presented results show that the locking effects 
are eliminated and good agreements with the given  
references can be achieved for all the test problems. 
 Based on the chosen strain interpolation functions  
in the natural curvilinear coordinates, the developed  
modified strain-displacement formulation can  
significantly simplify the process of implementation 
into continuum solid elements. 
 The presented finite element formulation is  
applicable for the analyses of general solid mechanics 
problems where both thick- and thin-shell elements 
are normally used. Moreover, further development 
for non-linear analysis of computational plasticity 
with large strains is also possible. The computational 
efficiency of present formulation can be further 
improved by the use of explicit formulations for 
evaluating volume integrals without using numerical 
integrations. This will be very beneficial for highly 
nonlinear geometry and nonlinear materials problems 
where  computational cost can be large.
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