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Abstract
This paper studies the convergence of Godard blind equalization which based on least mean square (LMS) 
algorithm. It focuses on studying the effect of changing the step-size of LMS algorithm on the convergence of 
Godard algorithm. Simulation results show that the increase in step-size has negative impact on the convergence.
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1 Introduction

Intersymbol interference (ISI) is a limiting factor in 
many communication environments. ISI can arise 
from bandlimited channels (telephone channels), 
and time-varying multipath fading channels. To 
achieve high-speed reliable communications, channel  
identification and equalization are necessary to  
overcome the effects of ISI. Traditionally, channel 
identification and equalization are achieved either 
by sending training sequences, or by designing the  
equalizer based on a priori knowledge of the channel. 
The latter approach is often not suitable for a radio 
communication environment since little knowledge 
about such a channel can be assumed a priori. The 
standard adaptive approach, though attractive in  
handling time-variant channels, has to waste a fraction 
of the transmission time for a training sequence.
 In contrast to standard adaptive equalization 
methods, the so-called blind equalization methods do 
not require a training sequence. Instead, the statistical 
properties of the transmitted signals are exploited to 
carry out the equalization at the receiver without access 

to the symbols being transmitted. Blind equalization 
algorithms are essentially adaptive filtering algorithms 
designed in such a way that they do not need the  
external supply of a desired response to generate the 
error signal in the output of the adaptive equalization  
filter. In other words, the algorithm is blind to the 
desired response. However, the algorithm itself  
generates an estimate of the desired response by  
applying a nonlinear transformation on sequence 
involved in the adaptation process. There are three 
important families of blind equalization algorithms 
depending on where the nonlinear transformation is 
being applied on the data. These are:

(i) The Bussgang algorithms, where the  
nonlinearity is in the output of the adaptive 
equalization filter [1-4].

(ii) The polyspectra algorithms, where the 
nonlinearity is in the input of the adaptive 
equalization filter [5-6].

(iii) The algorithms where the nonlinearity is 
inside the equalization filter, i.e. nonlinear 
filter (e.g. Volterra) and neural network [7].

 This paper focuses on one of the Bussgang  
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algorithms known as Godard algorithm [2], also, called 
Constant Modulus Algorithm (CMA). Many researchers  
have contributed to Godard algorithm [8-13].
 Figure 1 shows the general block diagram of 
Bussgang techniques. The important part in this 
diagram is the nonlinear function [-] appeared in the 
output of the equalization filter. Also, two important 
parts shown in Figure 1 are adaptive algorithm and 
FIR filter which are considered in the next sections.

2 Adaptive Algorithm

Adaptive algorithms are self-adjusting or self-designing  
techniques that can be applied to the analysis of signals 
with known, or time-varying, statistics. The adaptive 
algorithm starts with a set of initial conditions which, 
after successive iterations, converges to an optimum 
solution, provided that the signal is stationary. On the 
other hand, if the signal has time-varying statistics  
(i.e., it is nonstationary), the adaptive algorithm exhibits  
tracking capabilities by following up the variations in 
the statistics of the signal.
 The adaptive algorithms for the operation of 
adaptive filters can be identified in three distinct  
categories:

(i) Approaches based on WIENER filter theory.
(ii) Approaches based on KALMAN filter theory.
(iii) The method of least squares. 

 These algorithms are based on mean square  
error (MSE) or least squares criteria, and consequently, 
employ second order statistics of the signal involved 
in the adaptation process and are limited to tracking 
variations in the second order statistics domain.
 The third category (method of least squares) is a 
widely used technique for optimizing adaptive filters. 
Its popularity stems from its simplicity and power, 
and from the present widespread application of digital 
signal processing techniques such as finite impulse 

response (FIR) filtering. Thus, one of these algorithms 
was chosen to be studied, which is Least Mean Square 
Algorithm (LMS).
 There is a fourth category of adaptive filtering 
algorithms that has received a lot of attention recently. 
These algorithms are well suited for problems where 
tracking of higher-order statistical variations is needed. 
This class of techniques is based on higher-order  
statistics (HOS) or nonlinear (e.g. non-MSE) criteria. 

3 Architecture of FIR Filter with LMS Adaptation

A common architecture of FIR filter is the tapped 
delay line shown in Figure 2. The Ds represent delay  
elements, or registers, that also store the input  
sample values U(k) = [U(k), U(k-1), U(k-2),…..]. Each 
time a new sample is input, the other samples in the 
filter are shifted to the right until they encounter no 
further delay elements. The FIR filter in this figure 
can hold five samples at any one time. This is called 
a five-tap FIR filter. Typical FIR filter lengths range 
from 3 to over 100 taps, depending on the application. 
Each sample that is in the filter is multiplied by a tap 
weight, or “coefficient,” C(k) = [c1, c2, c3,….]. The 
products of all of the multiplications are summed to 
provide the filter’s output, , where 
H denotes the transpose conjugate.Regardless of the  
implementation of the FIR filter, all of the filters have 
the same problem of determining the tap weights.
 Determining the optimal tap weights is performed 
by the LMS algorithm. Specifically, LMS adjusts the 
tap weights of the filter to minimize the mean square 
error at the output of the FIR filter. Figure 3 shows how 
simply the LMS update equation fits into the flow of 
the tapped delay line FIR filter. Specifically, the output 

Figure 1: Bussgang block diagram.

Figure 2: FIR Filter architecture.
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of the filter is used to determine the error term e(k) as 
follows

 (1)

Where  is the equalizer output  
and d(k) is the desired ISI-free response. 
 The LMS update equation then uses the error term and 
the previous tap weights to generate the new tap weights as

 (2)

Where e*(k) is the complex conjugate of e(k), µ is  
LMS update parameter, also, call step-size, and U(k) 
is the input of the filter.
 Three important factors that govern the adaptation  
process of the LMS algorithm are:

• Initial tap weights setting.
• Error term determination.
• LMS step-size, µ

 Setting the initial tap weights is critical. If the taps 
are set close to their optimal values, the adaptation will 
quickly converge to the “best” tap weights. Further, 
the output of the FIR filter will be clean and accurate, 
beginning with the first sample. If the taps are set far 
from their optimum values, it will take longer to adapt 
the coefficients to useful values that can provide good 
signals at the output of the FIR filter. In order to drive 
the LMS update equation, it is necessary to determine 
the error between the output of the FIR filter and a 
desired target value (equation1). Further, the selection 
of the proper value for the LMS update parameter, µ, 
has a key role in determining the speed, accuracy, and 
stability of the filter adaptation.In general, a small 
value of step-size results in slower adaptation. 

4 Architecture of Godard Blind Equalizer

In order to determine the desired values (d(k)), there 
exist a number of different algorithms. Godard  
algorithms are the most commonly employed  
algorithms. One of their more remarkable features is 
their simplicity. However their main drawback is that 
they usually require a high number of data symbols to 
achieve convergence.
 General equation of Godard algorithm is as  
follows:

 (3)

Where , X(k) is the transmitted sample

 Figure 4 shows the complete architecture of  
Godard blind equalizer.

4.1  Constant Modulus Algorithm (CMA)

Among Godard Algorithms family, Constant Modulus 
Algorithm (CMA) is the most used adaptive algorithm 
for blind channel equalization. CMA is the specific 
Godard algorithm for P=2 in equation 3.
 CMA uses the constant modularity of the signal 
as the desired property. It assumes that the input to 
the channel is a modulated signal that has constant 
amplitude at every instant in time. Any deviation of 
the received signal amplitude from the constant value 
is considered a distortion introduced by the channel. 

Figure 4: Godard blind equalizer.
Figure 3: Architecture of   FIR  Filter  with  LMS  adaptation.
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The distortion is mainly caused by band limiting or 
multi-path effects in the channel. Both these effects 
result in intersymbol-interference (ISI) as mentioned 
before, and thus distort the received signal. CMA  
attempts to remove these effects of the channel from 
the received signal by forcing the output of the adaptive 
filter (Equalizer) to be of constant amplitude. CMA can 
also be used for QAM signals where the amplitude of 
the modulated signal is not the same at every instant.
The errore(k) is then determined by considering the 
nearest valid amplitude level of the modulated signal 
as the desired value.

5 Simulation Results

A series of computer simulation tests have been carried 
out on the communication system in Figure 5, which 
consists of QAM modulator operates at 9.6kb/s (with 
16-ary rectangular constellation), telephone channel, 
Additive White Gaussian Noise (AWGN), QAM 
demodulator, and Godard equalizer. The signal-to-
noise-ratio was considered to be 40dB in order to 
assure faster convergence. Three values of step-size 
were used, small value (0.000007), medium value 
(0.00007), and large value (0.0002).
 Figure 6 shows the slow convergence of the mean 
square error for small step-size, while, Figure 7 shows 
the eye-diagram generated by the equalizer. 
 Figure 8 shows that the convergence becomes 
faster for medium value of step-size, but, at the expense 
of increasingthe instability, while, Figure 9 shows the 
eye-diagram which becomes less clear compared to 
the one for small step-size.

Figure 6: Mean square error for small step-size.

Figure 5: Communication system.

Figure 7: Eye-diagram for small step-size.

Figure 8: Mean square error for medium step-size.
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 Figure 10 shows the extreme increase in the 
speed of convergence with extreme instability for 
large value of step-size, while, Figure 11 shows that 
the eye-diagram becomes unclear.

6 Conclusions

The blind equalization based on LMS criteria using  
constant modulus algorithm (CMA) has been tested  
using data transmission system at 9.6kb/s over  
telephone channel. The step size of the LMS algorithm, 
μ, was varied to see its effect on the convergence of 
the algorithm. From the results achieved it is apparent 
that as the step size, μ, increases, the system exhibits 
very fast adaptation but unstable response, while, when 
the step size becomes small, the adaptation goes to be 
slow but stable.
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