
53

KMUTNB: IJAST, Vol.7, No.2, pp. 53-57, 2014

Efficient and Effective Testing of Automotive Software Product Lines

Anastasia Cmyrev
Daimler AG, Benz-Str., 71063 Sindelfingen, Germany

Ralf Reissing*
Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany

* Corresponding author. E-mail: ralf.reissing@hs-coburg.de
Received: 18 April 2014; Accepted: 8 May 2014; Published online: 20 May 2014
DOI: 10.14416/j.ijast.2014.05.001

Abstract
Within the automotive industry, the clients’ high demand for individually customized products results in a growing
number of product variants. In order to control the complexity of developing these variants, a product line
approach is used that supports reuse of the common set of assets (e.g. requirements, software code, and test cases).
The naive approach to assure quality of the variants derived from the product line would be to individually test
each variant. However, due to the large number of variants it is virtually impossible to test all variants in detail
and still release the product line on time. In this paper, we propose a new test approach based on requirements
coverage and variant properties coverage (i.e. feature coverage) that leads to effective but also efficient test
coverage of all variants of the product line. A set of variants is selected that is 1) as small as possible, 2) covers
all requirements of the product line, and 3) covers all features of the product line. This small set of variants is
then tested in detail. Reducing the number of tested variants allows for deeper testing and thus finding more
defects. Because of the coverage achieved by the variant set, the quality of all other variants can be inferred
from the test results. Finding the optimal set of variants in itself is a very hard problem, i.e. in an industry
setting with huge numbers of possible variants it is practicably infeasible to strive for the optimum. Therefore,
we developed two approaches which are not guaranteed to find the optimal set but get very near to it in little time.
First, a greedy algorithm was created which produced very good results in very little time in all case studies. For
example, for a system with one million variants a set of eight representing variants was selected within seconds.
Second, a simulated annealing approach was evaluated in order to check for further potential of improvement.
However, the case studies showed that the greedy algorithm is the better choice for practical results.

Keywords: Product line testing, Requirements coverage, Variant coverage, Automotive embedded systems

1 Introduction

Within the automotive industry, individual customers’
demands, market specific requirements, technical
variability, strategic decisions etc. cause the number
of features and options to grow. The resulting space
of valid vehicle variants increases exponentially with
the number of possible options [1]. For example, the
current Mercedes-Benz A-class allows customers
to configure approx. 1015 possible variants. The
methodology of Product Line Engineering (PLE) helps
to cope with the resulting complexity and variability
of these systems in the development process. PLE

supports a systematic and proactive reuse of
development artefacts by taking advantage of the
products’ common set of assets and hence efficiently
reduces the time-to-market and the development costs
of the product line while at the same time improving
its quality [2].
 The PLE approach chosen at Daimler AG is
to use common feature models for all development
artefacts [3]. In this paper, the focus is on Product
Line (PL) requirements specifications and the
associated test cases in test specifications. Such generic
specification documents allow deriving specific product
specifications by selecting the relevant features with

54

A. Cmyrev and R. Reissing / KMUTNB: IJAST, Vol.7, No.2, pp. 53-57, 2014

respect to a certain product, as illustrated in Figure 1.
This way, the specifications have a generic character and
provide a high degree of reusability for the development
artefacts [4].
 Before products derived from a product line
can be delivered to customers, they need to be tested
whether they work as intended. This would mean
running all test cases associated with all products
planned for release to customers [5]. As the number of
products is very high, this is infeasible as testing would
take much too long. In order to reduce the number of test
cases executed, there are two vectors of approach which
can be combined. First, the number of products tested
can be reduced to a subset representing all products.
Second, the number of test cases executed over all
products is reduced, e.g. using appropriate regression
strategies for common features. In this paper, the main
focus is on the first approach, i.e. selecting a subset of
products as small as possible that still gives sufficient
confidence that products tested as well as products
not tested will have the necessary quality for release.

2 Related Work

In the literature, three main approaches for selection
of variants for product line testing can be identified.
First, the combinatorial testing, which determines
variants based on the interaction coverage of features,
e.g. pairwise coverage [6]. The approach exclusively
uses information from the variability model but
achieves an effective reduction of the product subset
for testing. The second strategy prioritizes variants
according to criteria like most critical, most sold etc. [7].
This strategy requires a lot of effort for providing the

necessary additional information. The third method
is similar to the one used in this paper and selects
variants based on requirements and architecture
coverage [1]. The drawback is that it does not scale
with real world product lines.

3 Approach

In this paper, the approach to selecting a small but
sufficient subset of variants maximizes both requirements
coverage and feature coverage. Requirements coverage
is defined as the ratio of requirements in the product
line requirements specification which are present in
at least one variant selected to the total number of
requirements. 100% requirements coverage makes
sure that there are no untested requirements. Feature
coverage is the ratio of all features of the common
feature model present in at least one variant selected
to the total number of features that were actually used
in the requirements specification. In general, feature
coverage is largely achieved by variants selected for
requirements coverage already, but may add variants
to cover special cases. 100% feature coverage makes
sure no feature present in any product is untested.
 Feature coverage makes sure that all features of
the product line are taken into account. Requirements
describe the behavior of the product line and also
reflect relationships between features (e.g. a requirement
can be associated with various features). For testing,
it is important to consider both requirements and
features.
 Finding the minimal set of variants that yields
100% requirements and feature coverage is a very hard
problem: the time needed grows with the increasing
number of variants, which in general grow exponentially
with the number of features in the feature model. In
practical applications the number of variants is huge,
therefore fast methods for selection are needed that
result in subsets small enough but possibly not minimal.
We evaluated both greedy algorithms (a local search
approach) and simulated annealing (a global search
approach).

3.1 Greedy algorithm

Greedy algorithms [8] work towards an optimal solution
by an iterative approach. In each iteration, from all
possible steps towards a solution the one step is chosen

Figure 1: Overview of the relationships between
feature model, requirements artefacts (RA) and test
artefacts (TA) at Daimler AG.

55

A. Cmyrev and R. Reissing / KMUTNB: IJAST, Vol.7, No.2, pp. 53-57, 2014

that gets most close to the optimum. This requires a
measure for the quality of intermediate results. Here,
this is the combination of requirements and feature
coverage.
 Some requirements may be relevant for exactly
one variant, therefore these variants need to be selected
in any case. Therefore, in a first step, the set of selected
variants is initialized with such variants. Interestingly,
in both case studies (see below) there were not such
variants.
 In the main loop, from the remaining variants the
one is selected that yields the biggest improvement in
requirements coverage. If there are several candidates
with the same yield, among those the one with the
biggest yield in feature coverage is chosen. If there is
still more than one candidate left, the choice is made
random among them. The loop is iterated until both
requirements coverage and feature coverage reach
100%. The algorithm is described in detail in [9].
 For the average case the run time of the Greedy
Algorithm is O(|C C|)). It is mainly determined
by the number of configurations C which have to be
sorted according to their coverage of requirements and
features within a priority queue.
 The memory consumption mostly depends on the
calculation of the configurations C from the feature
model and which requirements R and features F are
valid for which configurations: O(|C R|+|C F|).
The calculations of these lists are performed before
the actual selection in the Greedy Algorithm.

3.2 Simulated annealing

Simulated Annealing (SA) is a method for a random-
based search for a global optimum [10]. While a
Greedy Algorithm only accepts intermediate steps that
increase the quality of the solution, SA accepts worse
solutions with a certain probability that decreases over
iterations until it reaches zero. The big advantage is that
SA may get out of local optima in the solution space,
which a Greedy Algorithm cannot.
 Here, a random subset of variants of a fixed size
is created. Each intermediate step swaps a random
variant in the subset with another random one from
the rest of the variants. The quality metric E of the
new subset Cselected is defined by the ratio of uncovered
requirements R and features F, multiplying them with
individual weights w and adding the results to the

weighted ratio of selected variants to all variants Call
(see eq. 1). E needs to be minimized for best results.

 (1)

with

 Better new subsets are always accepted. Worse
new subsets are also accepted with a certain probability
which gets lower by each iteration. Else the former
solution is retained and used in the next iteration.
 The acceptance probability depends on a simulated
cooling schedule in analogy to annealing in metallurgy.
The cooling is determined by , with
a starting temperature Tinit = 100°C and an end
temperature Tend = 0.001°C, which is also used as the
stop criterion for SA. The cooling rate determines
how many iterations are executed between Tinit and
Tend to search for a better solution. In the case studies

results of section 4.2 depict case studies with = 0.01.
 Using a fixed size of the subset is a constraint
chosen from experience. First, adding or removing
variants was also a valid change in an iteration, but this
led to inferior results. Thus it was decided to use the
size N of the subset yielded by the Greedy Algorithm
as a starting size. SA runs were started with subset
sizes from {N-b, …, N, …, N+d} with a small b and
d, e.g. b, d = 3. The best solution of all subset sizes is
being saved as the global best solution. As the size of
the subset is considered in the last term of eq. 1, all
other terms equal the smaller subset is better.
 The run time of SA depends most on the number
of iterations performed that swap variants times the
number of subsets with fixed sizes: .
The memory consumption for SA is the same as for
the Greedy Algorithm: O(|C R|+|C F|).

3.3 Test case selection

Independent of the method used to select the subset
of variants for testing, the test cases to be executed
for each variant from the subset can be derived from
the generic test specification of the product line by
generating the specific test specification for each
variant selected.
 However, there may still be room for improvement

56

A. Cmyrev and R. Reissing / KMUTNB: IJAST, Vol.7, No.2, pp. 53-57, 2014

by applying regression strategies to reduce the overall
number of test cases for the subset, such that test cases shared
by variants from the subset may not have to be executed
for all variants [11]. Work on this issue is still ongoing.

4 Evaluation

4.1 Case studies

Both methods outlined in section 3 were applied to
two real world case studies at Daimler. The first case
study deals with a product line from the area of thermal
comfort. It has 840 requirements and 37 features,
resulting in a total of approx. 106 variants. The second
case study focuses on a product line for car battery
charging systems. It has 563 requirements and 20
features, resulting in a total of approx. 103 variants.
 Additionally, the most similar already existing
method from section 2, the pairwise method, was also
applied to the case studies and used as a benchmark.

4.2 Results

The Greedy Algorithm creates very small sets of
variants in very little time. Requirements and feature
coverage grow fast in the beginning (see Figure 2),
which is due to the greedy approach.
 In comparison, the Simulated Annealing takes
longer and does not guarantee sets having 100%
requirements and feature coverage. Experiments with
different set sizes showed that Simulated Annealing
never found qualifying sets of variants smaller than the
ones found by the Greedy Algorithm. Figure 3 shows
an example run for a set size equal to the result of the
Greedy Algorithm.

 Table 1 summarizes the results for the three
methods for case study 1, while table 2 does the same
for case study 2. Both case studies show the large
differences in run time between the Greedy Algorithm
and Simulated Annealing. The pairwise method is
faster still because it does not consider requirements,
only features. It always yields much larger sets of
variants because it additionally demands that all valid
pairs of features are present at least once.

Table 1: Results for Case Study 1
Greedy

Algorithm
Simulated
Annealing Pairwise

#variants (avg.) 8 10.6 32

run time (avg. sec) 30.8 721.2 1

req. cov. (avg. %) 100 97.33 100

feat. cov. (avg. %) 100 100 100

Table 2: Results for Case Study 2
Greedy

Algorithm
Simulated
Annealing Pairwise

#variants (avg.) 5 5 19

run time (avg. sec) 10.3 344.4 1

req. cov. (avg. %) 100 100 100

feat. cov. (avg. %) 100 100 100

5 Conclusions

In this paper, two new methods to selecting variants
from a product line as test representatives for all variants
were proposed. Both methods have the objective to
reach full requirements coverage and full feature
coverage.

Figure 2: Greedy Algorithm: Cumulative coverages
of selected configurations for Case Study 1.

Figure 3: Simulated Annealing: Coverages at each
iteration step for Case Study 1.

57

A. Cmyrev and R. Reissing / KMUTNB: IJAST, Vol.7, No.2, pp. 53-57, 2014

 The first method is based on the ideas of the
Greedy Algorithm, while the second method adapts
Simulated Annealing to this task. The results of both
methods are compared to an already existing method
based on pairwise feature coverage.
 Results for two real world case studies showed
that the Greedy Algorithm is superior to Simulated
Annealing in terms of quality of results and run time.
Even though Simulated Annealing is capable of leaving
local optima in the solution space, which the Greedy
Algorithm is not, Simulated Annealing never found a
better solution than the Greedy Algorithm.
 In comparison to the pairwise method, the
number of variants selected by the new methods is
significantly smaller. This is a large benefit for practical
work, as testing a single variant takes significant time
and cost. The fewer variants to be tested the better.
Nevertheless, the full requirements and feature coverage
give sufficient confidence that the test results for
the variants selected are representative for all other
variants of the product line.
 The major advantage of the pairwise method is
that it tests each interaction of two features at least
once, which the new methods in this paper cannot
guarantee. Therefore, for testing product lines with
very high demands on functional safety, it may be
useful to test additional variants selected by the
pairwise method, but only after testing the variants
selected by the proposed methods first. Additionally,
the proposed methods could be extended to additionally
optimize feature pair coverage, thus fusing the proposed
approach and the pairwise method.

References

[1] K. Scheidemann, “Verifying families of system
 configurations,” Doctoral Thesis, Technical
 University Munich, 2007.
[2] G. Böckle, P. Knauber, K. Pohl, and K. Schmid,

 Software Product Line Engineering: Foundations,
 Principles and Techniques, Springer-Verlag, 2005.
[3] M. Große-Rhode, P. Manhart, R. Mauersberger,
 S. Schröck, M. Schulze, and T. Weyer, “Demands
 of the leading industrial sectors on variability
 management and reuse and the resulting
 questions,” Software Engineering Workshop
 (ENVISION2020), 2013, pp. 251-260. (in German)
[4] E. Boutkova, “Experience with Variability
 Management in Requirements Specifications,”
 in 15th International Software Product Line
 Conference (SPLC), 2011, pp. 303-312.
[5] I. do Carmo Machado, J. McGregor, and
 E. Santana de Almeida, “Strategies for testing
 products in software product lines,” SIGSOFT
 Software Engineering Notes, vol. 37, pp. 1-8,
 2012.
[6] S. Oster, “Feature Model-based Software Product
 Line Testing,” Doctoral Thesis, Technical
 University Darmstadt, 2012.
[7] O. Manicke, “Variability management for
 mastering complexity in the development process
 of mechatronical vehicle functions,” Doctoral
 Thesis, Technical University, Dresden, 2012. (in
 German)
[8] V. V. Vazirani, Approximation Algorithms,
 Springer-Verlag, 2001.
[9] A. Cmyrev and R. Reissing, “Optimized Variant
 and Requirements Coverage in Testing,”
 Informatik 2013, 11th Workshop Automotive
 Software Engineering, Koblenz, pp. 2417-2429,
 2013. (in German)
[10] F. W. Glover and G. A. Kochenberger,
 Handbook of Metaheuristics, Springer-Verlag,
 2003.
[11] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity,
 “Incremental Model-Based Testing of Delta-oriented
 Software Product Lines,” in 6th International
 Conference on Tests and Proofs, 2012, pp. 67-82.

