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Abstract 

In this paper, Adaptive Neuro-Fuzzy Inference System is utilized to learn from training data and create ANFIS 

with limited mathematical representation of the system. The proposed system consists of three phases i.e. 

Generation of training data, Execution of ANFIS, Generation of joint angle trajectory. The schematic of the 

proposed system is shown in Figure 4. The predicted joint angle configurations are further to be used to 

determine the trajectory for the task execution of the robot. The simulation studies conducted on a 5-DOF 

SCORBOT ER-IV robot manipulator shows the effectiveness of the approach over conventional techniques.  
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1 Introduction

A robot manipulator is composed of a serial chain of 

rigid links connected to each other by revolute or 

prismatic joints to perform a task in the 3-D space.  A 

revolute joint rotates about a motion axis and a 

prismatic joint slides along a motion axis. Each joint 

location is usually defined relative to neighboring 

joints. The relation between successive joints is 

described by 4X4 homogeneous transformation 

matrices that contain orientation and position data of 

the robot [1]. The product of these transformation 

matrices produces final orientation and position data 

of a n-degree of freedom robot manipulator.  

A robot manipulator is designed to perform a task in 

the 3-D space. The tool or end-effector is required to 

follow a planned trajectory to manipulate objects or 

carry out the task in the workspace.  This requires 

control of position of each link and joint of the 

manipulator to control both the position and 

orientation of the end-effector. To program the tool 

motion and joint-link motions, a mathematical model 

of the manipulator is required to refer to all 

geometrical and/or time-based properties of motion. 

A kinematic model describes the spatial position of 

the joints and links, and position and orientation of 

the end-effector. 

In designing a robot manipulator, kinematics and 

dynamics play a vital role. The kinematic model 

gives relations between the position and orientation 

of the end-effector and spatial positions of joint links. 

Basically the kinematic modeling is split into two 

problems as forward kinematics and inverse 

kinematics. The forward kinematics problem is to 

determine the position and orientation of the end-

effector from the given values of joint variables of 

the robot. The inverse kinematics problem is 

concerned with determining values for the joint 

variables that achieve a desired position and 

orientation for the end effector of the robot.  

In practice, a robot manipulator control requires 

knowledge of the end-effector position and 
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orientation for the instantaneous location of each 

joint as well as knowledge of the joint displacement 

required to place the end-effector in a new location. 

Therefore, direct and inverse kinematics are the 

fundamental problems of utmost importance of the 

robot manipulator’s position control. Many industrial 

applications such as welding and certain type of 

assembly operations require that a specific path 

should be negotiated by the end-effector. To achieve 

this, inverse kinematics are necessary to find the 

corresponding motion of each joint, which will 

produce the desired tool-tip motion.  

 

2 Inverse kinematics 

Inverse kinematics computations for a serial robot are 

elemental for design, analysis of workspace for path 

planning, trajectory planning and control, and offline 

programming of robots. Given the geometry of a 

robot and pose of its end-effector i.e. Cartesian 

position and orientation, the inverse kinematics (IK) 

computes all joint angle values for realizing that 

particular pose.  

A serial robot consists of serial links connected in 

series by either revolute or prismatic or both types of 

joints. The kinematic control of such a serial robot 

involves the coordination of links of a kinematic 

chain to produce the desired motion. The path 

planners working in the background or in offline 

mode determine the Cartesian path for the robot and 

often devise the strategy for kinematic control of the 

robot. The execution of this Cartesian path demands 

for the conversion of Cartesian coordinates into joint 

angle coordinates. This conversion is done by the 

mapping Cartesian space of the robot into its joint 

space by using inverse kinematics relations. This 

mapping process is nonlinear due to the association 

of nonlinear trigonometric equations and becomes 

more complex for robots with complex geometry and 

multi-degree of freedom. Moreover, the associated 

problems like coupled nature of position and 

orientation kinematics of the robot, existence of 

multiple solutions and the presence of singularities 

add to the computational complexities.   

The computation of inverse kinematics solutions for 

the control of a robot is attempted by means of 

various methods such as algebraic methods, 

geometric methods, numerical methods and neural 

network based methods. Algebraic and geometric 

methods are desirable because they are faster and 

easily identify all possible solutions, but algebraic 

methods do not guarantee closed form solution. For 

the geometric method, closed form solutions for the 

first three joints of the manipulator must exist 

geometrically. The iterative methods converge to 

only a single solution depending on the starting point 

and will not work near singularities. The IK solution 

by these traditional methods is time consuming 

because of high complexity of the mathematical 

formulation if the joints of the manipulator are more 

complex [2]. Hence, a few attempts were made to 

apply artificial neural networks (ANN) for prediction 

of IK solutions for any particular robot. Essentially, 

ANN approximates inverse kinematics relations of a 

robot in order to map the Cartesian configuration into 

corresponding joint angles. The accuracy of predicted 

joint angles depends upon the method used for 

training of the network. Among the various methods 

used for training the network, back propagation 

neural network (BPANN), perceptron neural network 

and radial basis function (RBF) are the most 

commonly used methods. Out of them, BPANN is 

most popularly implemented to determine IK 

solutions of planar as well as articulated robots [3-6].  

Certain hybrid techniques made use of ANN along 

with expert systems, fuzzy logic and genetic 

algorithm for obtaining IK solutions [7-9]. An IK 

solution of a two DOF planar robot was determined 

with an expert system that has made use of a modular 

neural network architecture [7]. An adaptive fuzzy 

logic approach was employed to determine IK 

solutions of a three DOF planar robot [8]. A neuro-

genetic approach that combined ANN and a genetic 

algorithm was used to solve the IK problem of a two 

DOF planar robot [9].  These approaches can easily 

provide IK solutions for two or three DOF planar 

robots. On the contrary, these methods demand high 

performance computing systems and complex 

computer programming for obtaining the solutions of 

more DOF robots. In view of this, neural network 

based approaches are likely to be superior to hybrid 

methods. Among the existing networks, BPANN as 

well as perceptron neural network are time intensive 

due to the requirements of a higher number of epochs 

(iterations) for training of the network [8].On the 

contrary, an RBF neural network shows a faster 

convergence rate and high accuracy due to its ability 

of local approximation [10]. RBF along with a 

lookup table was used for predicting joint angles for 

two and three DOF planar robots [4]. Due to its faster 

convergence rate, it was also used for training the 

ANN for successful prediction of singularity free IK 

solutions of a six axis redundant robot [11]. 

Moreover, RBF can handle a large database very 
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effectively and converges quickly which makes it 

efficient to predict IK solutions within a short period.  

 

3 Robot kinematics 

SCORBOT-ER IV is a vertical articulated robot, with 

five revolute joints. It has a stationary base, shoulder, 

elbow, tool pitch and tool roll. The line diagram and 

detailed parts of the SCORBOT ER-IV robot are 

specified in Figure 1 and 2. 

 

Figure 1: Line diagram of SCORBOT ER-IV 

 

 

Figure 2: SCORBOT ER-IV 

 

3.1 D-H Coordination system 

Denavit and Hartenberg (D-H) put forward a matrix 

method to build the attached coordinate system on 

each link in the joint chains of the robot for 

describing the relationship of translation or rotation 

between contiguous links [12]. The robot kinematic 

model is based on the D-H coordination system. The 

relative translation and rotation between link 

coordinate systems i-1 and i can be described by a 

homogenous transformation matrix, which is a 

function of four kinematic parameters αi (Link twist), 

ai (Link length), di (Joint distance), and θi (Joint 

angle) as shown in the Table 1. The frame assignment 

of the manipulator by considering the home position 

is shown in Figure 3. 

For the rotation joint, only the joint angle θi is a joint 

variable while the others are constant. Obviously, for 

the translation one, only the offset di is a variable 

while others are constant.  

 

Figure 3: Frame assignment of SCORBOT ER-IV 

 

Table 1: D-H Parameters 

Joint (i) ai αi di θi 

1 a1 π/2 d1 θ1 

2 a2 0 0 θ2 

3 a3 0 0 θ3 

4 0 π/2 0 θ4 

5 0 0 d5 θ5 

 

3.2 Forward kinematic analysis 

The position and orientation of the tool frame relative 

to the base frame can be found by considering the n 

consecutive link transformation matrices relating to 

frames fixed to adjacent links.  The tool frame, frame 

{n}, can also be considered as a translated and 

rotated frame with respect to base frame {0}. The 

transformation between these two frames is denoted 

by the end-effector transformation matrix T, in terms 

of tool frame orientation (n,o,a) and its displacement 

(d) from the base frame {0}.   

                                               (1) 

This equation is known as the kinematic model of the 

n-DOF manipulator.   
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To find the transformation matrix relating to two 

frames attached to adjacent links, consider frame {i-

1} and frame {i}. The transformation of frame {i-1} 

to frame {i} consists of four basic transformations.  

 1.  A rotation about zi-1 axis by an angle θi 

 2.  Translations along zi-1 axis by distance di 

 3.  Translation by distance ai along xi axis and   

 4.  Rotation by an angle αi about xi axis   

Using the spatial coordinate transformation, the 

composite transformation, which describes frame {i} 

with respect to frame {i-1}, is obtained using 

equation (3). 

                (2)  

for  i= 1,2….n 

       

                (3) 

where, 

Si = Sin(θi)               Ci = Cos(θi) 

Cαi = Cos(αi)           Sαi = Sin(αi) 

 

3.3 Inverse kinematic analysis 

Opposite to the forward kinematic analysis, the 

corresponding variables of each joint could be 

figured out with the given location requirement of the 

end of the manipulator in the given reference 

coordinate system. This is called the inverse 

kinematic analysis, or kinematic inverse solution, 

multiplying each inverse matrix of  matrices on 

the left side of above equation and then equalizing 

the corresponding elements of the equal matrices of 

both ends [13]. 

The desired location of the manipulator can be 

determined by equation (4). 

 

                                       (4) 

where, 

d is the translation of end effector from the reference 

frame. 

n, o, a describes the orientation of end-effector and 

represents the x, y, z axes of the end-effector 

After equating  (Transformation matrix for the 

manipulator) to the end-effector tool point 

transformation matrix, the unknown joint angles can 

be determined: 

                                                         (5) 

                         (6) 

 

                                                        (7) 

 

 

 

 

 

                            (8) 

       (9) 

                           (10) 

4 Proposed ANFIS based approach 

 

Figure 4: Schematic of the proposed ANFIS based 

approach for trajectory generation 
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Figure 4 shows the architecture of the proposed 

ANIFS based system. The proposed system consists 

of three phases, 1. Generation of training data 2. 

Execution of ANFIS 3. Generation of joint angle 

trajectory. The working principle of each of these 

phases is given in the following section. 

 

4.1 Generation of training data 

ANFIS is the blend of a neural network and fuzzy 

inference system. Using a given input/output data set, 

the ANFIS constructs a fuzzy inference system (FIS) 

whose membership function parameters are adjusted 

using either a back propagation algorithm alone or in 

combination with a least squares type of method. 

This adjustment allows fuzzy systems to learn from 

the data used for modeling. Therefore, the data used 

for training this system plays an important role in 

demonstrating the effectiveness of the system. The 

joint space of the robot can be considered as an 

inverse image of the Cartesian space and vice versa. 

Similarly, the forward kinematics can be assumed to 

be an inverse image of inverse kinematics and vice 

versa. Based on this, it is decided to employ forward 

kinematics relations for determining the pose of the 

end-effector, i.e. P={X, Y, Z, Roll, Pitch, Yaw} 

corresponding to Q={1, 2, 3, 4, 5}. Hence, the 

pose P can be used as an input and the corresponding 

joint angle Q as the output for the ANFIS training 

data. In other words, a Q-P relationship is used while 

generating the data whereas P-Q mapping is done 

while training the ANFIS. ANN trained with such a 

data set is found to predict IK solutions more 

accurately due to insignificant mapping errors 

between input and output data [13] Hence, the same 

concept was also used for the ANFIS system. In this 

work, a total 5190 data sets were used for the training 

purpose. 

 

4.2 Execution of ANFIS 

ANFIS has a network-type structure similar to that of 

a neural network. It maps inputs through input 

membership functions and associated parameters, and 

then outputs through output membership functions 

and associated parameters to outputs. The parameters 

associated with the membership functions change 

through the learning process. The computation of 

these parameters (or their adjustment) is facilitated by 

a gradient vector. This gradient vector provides a 

measure of how well the fuzzy inference system is 

modeling the input/output data for a given set of 

parameters. When the gradient vector is obtained, any 

of several optimization routines can be applied in 

order to adjust the parameters to reduce some error 

measure. This error measure is usually defined by the 

sum of the squared differences between actual and 

desired outputs. ANFIS uses either back propagation 

or a combination of least squares estimation and back 

propagation for membership function parameter 

estimation. In this work, genfis3 function of FUZZY 

Toolbox of Matlab was used to generate a FIS using 

fuzzy c-means (FCM) clustering by extracting a set 

of rules that models the data behavior. The function 

requires separate sets of input and output data as 

input arguments. The rule extraction method first 

uses the fcm function to determine the number of 

rules and membership functions for the antecedents 

and consequents. The number of clusters determines 

the number of rules and membership functions in the 

generated FIS. For this work, the number of clusters 

was selected automatically by the command. The 

input membership function was selected to be 

'gaussmf', and the output membership function was 

selected to be 'linear'. The input and output was given 

to genfis3 using the database generated in the first 

phase of the approach. The number of iterations for 

genfis3 was selected to be 1000 and the tolerance to 

be 0.001 after certain trials. In this way, the training 

process of ANFIS was executed.  

 

4.3 Testing and validation of ANFIS 

After executing the ANFIS based programme, in 

order to check the validity and accuracy of obtained 

results testing and validation was done by comparing 

the joint angle predicted by ANFIS and obtained 

using inverse kinematic equations. For this purpose, a 

set of 1000 configurations was selected randomly 

from the training data set of 5190. The difference 

between predicted and calculated joint angles is 

displayed in Figure 5.  
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Figure 5: Difference between deduced and predicted joint angles in degrees 

The graphs shown in Figure 5 represent the error 
between the values of joint angles predicted by 
ANFIS and calculated from the inverse kinematic 
equations. The average error in prediction of all joint 
angles using ANFIS is around ±0.04 degree. This 

error is very small as compared to the minimum joint 
angle increment possible with all five joints of the 
robot. This shows that the ANFIS used for training 
and inference purpose works very well. In order to 
test, the applicability of the proposed ANFIS based 
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approach, a sample Cartesian trajectory is decided for 
the SCORBOT and the corresponding joint angle 
trajectory is determined in the next section. 

 

5 Generation of trajectory 

The training of the ANFIS was done as per the 

process explained in the previous section. In order to 

validate the performance of the trained ANFIS, a 

Cartesian path made available by a high end path 

planner is given as an input to the ANFIS. These 

Cartesian configurations were converted to joint 

angle configurations by the trained ANFIS. However, 

the inverse kinematics of any mechanism leads to 

multiple solutions, which also happens when trained 

ANFIS is used. The objective of the proposed ANFIS 

based system is to convert a Cartesian trajectory into 

a joint angle trajectory. Hence, the validation of the 

developed ANFIS based system was done until an 

appropriate joint angle trajectory was obtained. The 

Cartesian path given as input to the ANFIS was a six 

node path. The information of each node is available 

in the form of a pose i.e. position and orientation.  

The position is specified by Cartesian coordinates 

where as orientation by roll, pitch and yaw. The end-

effector of the robot should move through  

the following nodes : P1 (-110,130,34,35,104) ;  

P2(-109,9,74,166,102); P3(7,6,-87,-38,-98); 

P4(48,86,-49,45,-297) ; P5(128,8,74,43,-300) ; 

P6(130,127,-86,-37,100). The two dimensional 

representation of this six node path to be travelled by 

the robot end-effector is shown in Figure 6. The 

results obtained after utilizing inverse kinematics 

equations and the ANFIS based system are presented 

in Table 2. 

 

 

Figure 6: Two dimensional representation of the path to be followed by robot end effector 

 

Table 2: Inverse kinematic solutions obtained from IK equations and ANFIS 

Point End-effector pose Joint angles from IK 

equations (a) in Degrees 

Joint angles from ANFIS (b) in 

Degrees 

P1 (-110,130, 34,-35,104) (125, 5,-50,120,300) (125.31, 5.14,-49.74, 120.2,300.53 ) 

P2 (-109,9,74,166,102) (85,125, 30,160,300) (85.79,125.05,30.67,160.05,300.11) 

P3 (7, 6,-87,-38,-98) (-75,125,-90,160, -300) (-74.35, 125.3,-89.91,160.54,-299.08) 

P4 (48, 86,-49,45,-297) (-35,85,70,-40,-300) (-34.44, 85.85,70.61,-39.23,-299.76) 

P5 (128, 8,74,43,-300) (-115,5,70,160,100) (-114.64 , 5.57, 70.36,160.1,100.93) 

P6 (130, 127,-86,-37,100) (5,125,30,200,100) (5.08, 125.35,30.34,200.3, 100.24) 

 

 

From Table 2, it can be seen that the results obtained 

using IK equations and the ANFIS based approach 

are comparable. The difference between predicted 

joint angles and expected joint angles lies in the 

decimal places of the observed values. The graphs 

shown in Figure 6 and the results shown in Table 1 

are little different. The main reason is that the ANFIS 

based algorithm was used for a greater number of 

observations whereas the configurations used in the 

example are less. However, the results are 

comparable.  
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6 Conclusions 

This paper has compared the IK solutions obtained 

from the IK equations for a SCORBOT ER-IV and 

ANFIS based approach. The idea of using forward 

kinematics equations for generating training data for 

ANFIS led to a nearly accurate training of the ANFIS 

network. The proposed approach shows advantages 

over IK equations because the latter needs to utilize 

complex concepts of mathematics and trigonometry. 

Moreover, ANFIS based systems need more data for 

improved performance. Hence, considerable more 

time is required for training, testing and validation. 

Another problem associated with ANFIS is handling 

two inputs and one output at a time. This leads to 

utilization of multiple ANFIS networks especially 

when one is dealing with a higher degrees of freedom 

robot. Despite of these shortcomings, the proposed 

ANFIS based approach is very useful for obtaining 

inverse kinematic solutions as it can work as a 

control algorithm. The authors are planning to use 

this approach for the generation of a robot trajectory 

for welding operations in the future. 
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