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Abstract 

In mass production, tolerance analysis is a very important but complex task to assess the impact of allowed 

geometrical deviations on the functionality of the assembled products. In the design stage, the result of 

tolerance analysis can be a predicted defect probability expressed in ppm (parts per million) which value is 

highly dependent on the probabilistic modeling of dimension deviations. Tolerance analysis meets a double 

problem. The first one is the geometrical description of deviations and the second one is the associated 

statistical model. This paper focuses on this second issue. It proposes a relevant probabilistic model of each 

dimension deviation since no measure is available in the design stage. Lots of authors have proposed to 

compute the defect probability from one particular production batch with assumptions on probabilistic laws, 

on mean values and on standard deviations in order to assess what we call, in this paper, a conditioned defect 

probability. Due to tool wear, tool settings, material variations, … the production batches have variable 

probabilistic characteristics. The APTA methodology [2], proposed by the authors, aims at considering all the 

allowable production batches in the defect probability prediction thanks to a joint density function. The aims 

of this paper are to present the bases of the APTA methodology, to prove that it works for usual capability-

based tolerance and inertial tolerance [3] and to compare both tolerance approaches on applications. 
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1 Introduction 

In industry, the customer's technical requirements 

regarding an assembled product are translated into 

specifications. These specifications list functional 

requirements to guarantee the performance of the 

delivered assembled product. These functional 

requirements are justified by using mathematical 

equations that can be explicit linear for a linear stack-

up, explicit non-linear, or even non explicit for 

hyperstatic assembling or for CAD-based models.  In 

mass production, quality requirements are necessary 

in order to guarantee to the customer that the 

delivered assembled product is robust with respect to 

manufacturing variability and geometrical tolerances. 

For each functional requirement Y , depending on 

part dimensions iX , ( )iY f X , it exists a 

probability that the functional requirement will not be 

reached, that is the defect probability expressed in 

parts per million (ppm). In a more and more 

competitive world, industrial companies feel the need 

to tolerance analysis managing defect probability PD  

in the design stage for economic and environmental 

reasons, reducing warranty returns and wastage in 

production. The calculation of such a probability 

would enable design tolerancing to be managed or 

optimized by proposing the most economic design 

(target value and / or tolerance of component 

dimensions) with respect to the allowable defect 

probability. This paper deals with the issue of defect 

probability PD  assessment in the design stage. From 

a scientific point of view, the calculation of PD  is not 

simple and concerns the assessment of a very low 

probability (a few ppm). To compute defect 

probability, assumptions on statistical models must 

be made, and several assumptions exist. A very 

interesting overview is proposed by [1]. All are based 

on the consideration of a particular production batch 

with particular values of mean values and standard 

deviations. However, these quantities are variable 

with time due to tools wear, tools settings, material 

variations, … and the new proposed APTA 

(Advanced Probability - based Tolerance Analysis of 

products) method [2] aims at taking this allowable 

variations with time into account in the defect 

probability assessment.  In the industry the tolerance 

of part batches are specified mainly using capability 

requirements. Anyway, another recent possibility 

based on the Taguchi loss function is the inertial 

tolerance proposed by Pr. M. Pillet [3] for a better 

management of the quality of products. 

This proposed paper aims at: 

 presenting the basis of a new method (the APTA 

method) and the computation principles for 

explicit linear or non linear functional 

requirements. 

 showing that it works for usual capability-based 

tolerance and the recent inertial tolerance; 

 comparing capability-based tolerance and inertial 

tolerance in terms of defect probability of 

isostatic assembled products. 

These three objectives constitute the original aspects 

of this paper.   

After Section 2, which focuses on the conformity 

domain of capability-based tolerance and inertial 

tolerance, Section 3 gives the basis of the APTA 

methodology for any conformity domain and any 

distribution (variation) of batches characteristics. The 

applicability of the APTA methodology for 

capability-based tolerances or inertial tolerances is 

demonstrated for a basic one dimension problem 

(Section 4), for a two dimensions linear stack up 

(Section 5) and for a non linear functional 

requirement (Section 6). In all the presented APTA 

applications, a comparison between capability-based 

tolerance and inertial tolerance is proposed. 

Applications in sections 5 and 6 are quite simple 
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regarding complex problems (2D or 3D with or 

without gaps) presented in the literature [4,5].  

The aim is not to present a complex deviation 

description or a complex 2D or 3D application but to 

deal with the consideration of variable statistical 

modeling in the defect probability assessment. 

Adaptation of the APTA methodology to deal with 

complex systems will be discussed in conclusion. 

2 Capability-based tolerance and inertial 

tolerance 

In both context of capability-based tolerance and 

inertial tolerance [3], a part dimension iX  is defined 

by: 

 a target value iT ; 

 a  tolerance it  supposed to be shared around 

iT . 

A iX  production batch is defined by: 

 a mean value i  measured on a iX  batch 

sample from which the mean shift i  can be  

deduced by i i iT   ; 

 a standard deviation noted i . 

2.1 Capability-based tolerance 

In the context of the capability-based tolerance, two 

capability level requirements noted ( ) ( ),r r

pi pkiC C  are 

added. Each iX  production batch must verify 
( )r

pi piC C  and ( )r

pki pkiC C . ,pi pkiC C  are defined with 

the well-known equations: 

6

i
pi

i

t
C


  

/ 2

3

i i

pki

i

t
C






  

In this context, the conformity domain where a 

production batch has conform statistical 

characteristics can be drawn in a standard ,   

diagram. The conformity domain is bounded by the 

equations ( ) ( )( ) , ( , )r r

pi i pi pki i i pkiC C C C    . Figure 1 

shows usual iso-values of ,pi pkiC C  for an arbitrary 

value of 2it  . In this diagram, the conformity 

domain has a triangular shape if ( ) ( )r r

pki piC C  and is 

truncated at the top if ( ) ( )r r

pi pkiC C . As an example, the 

conformity domain corresponding to 
( ) ( ) 1.66r r

pki piC C   is represented in grey Figure 1.  

2.2 Inertial tolerance 

The inertial tolerance [3] is based on the quadratic 

Taguchi loss function. It aims at managing the 

financial loss due to scatters between each measure 

and its target. The inertia of a manufactured batch is 

defined as follows: 

2 2I     

The maximum allowable inertia is noted ( )rI  and 

each batch must verify ( )rI I  to be suitable. Figure 

2 represents the conformity domain in the case of the 

inertial tolerance. Conformity limit are circles which 

equations depend on ( )rI :  

( ) ( )2 2r rI I I      

In Figure 2, the conformity domain corresponding to 
( ) 0.2rI   with 2it   is drawn in grey. 

2.3 Short comparison of both conformity domains 

The maximum allowable standard deviation (max)

i  is 

got for the capability-based tolerance for ( )r

pi piC C   

and (max) ( )/ 6 r

i i pit C  . For inertial tolerance, 
(max) ( )r

i I  . In this paper, a capability-based 

tolerance is considered to be equivalent to an inertial 

tolerance if their associated maximum allowable 

standard deviations are the same. The following 

equation comes for equivalent tolerance approaches: 

( ) ( )/ 6r r

i piI t C  

A geometrical comparison of associated conformity 

domain shows that capability one is larger and allows 

larger mean shift. However, it exists a small zone at 
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the top of the circular domain that is allowed by 

inertial tolerance and not by capability tolerance. 

The dimension out tolerance probability 

  P =Prob / 2; / 2D i i i i iX T t T t   , is defined for a 

Gaussian dimension by: 

/ 2 / 2
P ( ) ( )i i i i

D

i i

t t 

 

 
                          (1) 

where   is the cumulative density function of the 

standard Gaussian variable. Iso-values of PD
 are 

drawn in Figure 3 in the ,   diagram. These iso-

values of PD
 are very close to the capability-based 

conformity bounds. High values of PD
 are got with 

high values of standard deviations. 

3 APTA methodology bases for the defect 

probability prediction 

For lots of bibliography references [6,7,8,9], the 

probability PD  that Y  will be outside its bounds 

 P Prob( ( ) ; )D i Y YY f X LSL USL    is evaluated 

using deterministic assumptions about ,i i  . The 

obtained probability is only a conditioned 

probability, knowing the value of ,i i  ; it is called 

| ,PD    in the following. The objective of the 

proposed APTA methodology is to take into account 

variable mean shifts and standard deviations in the 

evaluation of defect probability. In other words, the 

aim is to compute PD
 rather than only computing the 

conditioned probability 
| ,PD   . In the following, each 

dimension 
iX  is considered to have an independent 

Gaussian distribution within the production batch, 

with a mean shift 
i  and a standard deviation 

i . In 

any case, the proposed methodology could be usable 

and spread to non-Gaussian and/or dependent 

variables. 

3.1 Mathematical formulation of the APTA 

method 

The two quantities ,i i   are considered as random 

variables defined by a joint probability density 

function called , ( , )i ih     which depends on the 

production device. This density function is bounded 

by the conformity domain. This function is equal to 

zero outside the conformity domain (Figure 4) 

because out-of-tolerance batches are considered as 

being excluded. It can be defined over the whole 

conformity domain or over a reduced domain named 

variability domain Conformity AreaDV  .  

Let us consider the following three events: 

A: The functional requirement is not 

satisfied ( Y is outside the tolerance); 

Bi: The mean shift of the 
iX  batch is in the 

range [ ; d ]i i i    and its standard 

deviation is in the range [ ; d ]i i i   , see 

Figure 4 for an illustration of 
iB  over the 

capability conformity domain. 

B: Event B  consists of the intersection of 

the Bi events 

   1 ; d ; dn

i i i i i i i iB           , that 

is to say that each dimension is in the 

specified ranges. 

The probability measurement of event Bi is then: 

,Prob( ) ( , )d di i i i iB h       

and: ,

1

Prob( ) ( , )d d

n

i i i i

i

B h     


  

 

with an assumption of batch parameter independence 

for two different dimensions. 

Then:  | ,Prob( | ) P ,D i iA B      

Consequently, using Bayes’ theorem: 

Prob( ) Prob( | )Prob( )A B A B B   

 | , ,

1

Prob( ) , ( , )d d

n

D i i i i i i

i

A B P h        


  

And finally, by extension to the whole domain DV : 
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 | , ,

1V

P P , ( , )d d

D

n

D D i i i i i i

i

h        


         (2) 

The dimension of this integral is 2n  ( n  being the 

number of dimensions in f ). PD
 is the expectation 

of  | ,P ,D i i     weighted by the , ( , )i ih     

product. It is the defect probability evaluated with the 

APTA method considering all the possible mean 

shifts and standard deviations with a joint density 

function defined by , ( , )i ih    . All the 

manufactured batches are assumed to be in the 

conformity domain and consequently out-of-

tolerance batches are not considered in the 

formulation. Equation (2) is the basis of the APTA 

methodology. In addition, according to equation (2), 

PD  can be bounded by the upper value of 

 | ,P ,D i i     when ( , )i i   vary inside the 

variability domain DV :  | ,
, VD

P max P ,D D i i 
 

 


  

This upper value, called PU

D , is easier to compute 

than the whole integral defined in (2) and does not 

require any knowledge of , ( , )i ih    . To take 

advantage of the APTA methodology, preliminary 

statistical analyses must be performed in order to 

determine a suitable expression for , ( , )i ih    . To 

do so, capability monitoring is necessary and 

knowledge must be accumulated to characterize 

, ( , )i ih     for each kind of process used in 

manufacturing. The use of this methodology requires 

an effort concerning production monitoring analysis. 

In this way, for a new product using parts 

manufactured with a well-known process, it is 

possible to use the knowledge of the old production 

process to validate assumptions about , ( , )i ih    . 

Several expressions of , ( , )i ih     can be given, 

depending on the statistical analysis of a particular 

production device. For more details on the APTA 

method and applications in an industrial context, the 

reader can refer to [2]. 

3.2 Application to a production device with 

uniform 
i  and 

i  

If the standard deviations and mean shifts can be 

considered simultaneously random, a joint density 

function ,h   has to be set. Considering the case 

where the joint ( , )i i   density function is uniform 

(the most severe case), then: 

,

1
( , ) if , Variability domain 

0 otherwise

i i i i D

V

h V
A

      



  

where 
VA  is the surface of the variability domain that 

can be the whole conformity domain or a reduced 

domain included within the conformity domain. Only 

this kind of model will be consider in the following. 

3.3 Numerical computation of PD  

Equation (2) represents the mathematical expectation 

of | ,P ( , )D i i     with respect to the joint density 

function of ,i i  . To reduce computation time, 

Equation (2) is assessed using a Monte Carlo 

scheme: 

 

 

| , ,

1

| ,

( ) ( )

| ,

1

P P , ( , )d d

E(P ) Expectation operator

1
P P ,

n

D D i i i i i i

iVD

D

N

k k

D D i i

k

h

N

   

 

 

     

 









 





 

where ( ) ( ),k k

i i   are random vectors simulated 

according to ,h  . The number N  must be set 

according to the 95% confidence interval on PD : 

P P1.96 1.96
P P PD D D

N N

 
     

P  is the standard deviation of the PD  estimation 

defined by: 

P

1 P
P

P

D
D

DN



  
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The confidence interval size is defined as: 

P
95%

2 1.96
CI

N


  

4 Basic APTA application on one dimension 

Let us consider only one dimension noted X  defined 

by a target value 10T   and a tolerance 2t   

around the target. The aim is to compute the defect 

probability on X  i.e.  P Prob( 9;11 )D X   when 

X  has capability-based tolerance or inertial 

tolerance. For this application, the proposed 

requirements on X  batches are the following: 

 Inertial tolerance: two cases ( ) 0.2rI   and 
( ) 0.33rI  ; 

 Capability-based tolerance: two cases 
( ) ( ) 1.66r r

pk pC C   and ( ) ( ) 1r r

p pkC C   that 

are equivalent to inertial tolerance in the 

maximum allowable standard deviation. 

In both cases, the minimum standard deviation in 

optimal manufacturing conditions is assumed to be 
(min) 0.03  . This is given a lower bound of the 

variability domain. Figure 5 shows graphically the 

results for both tolerance approaches. The 

conditioned defect probability | ,P ( , )D i i     

computation is performed using equation (1).  Firstly, 

the upper bound PU

D  is computed over the variability 

domain in grey. For both tolerance approaches, the 

defect probability upper bound is got for the most 

important standard deviation. Consequently for 

equivalent tolerance approaches verifying 
( ) ( )/ (6 )r r

i pI t C , the defect probability upper bound 

is the same in this basic application. The APTA 

defect probability is computed for the four variability 

domains considering uniform joint density 

, ( , )h    . Results are presented graphically in 

Figure 5 in the white rectangular with its associated 

confidence interval between parentheses. The APTA 

value PD  is the expectation of conditioned defect 

probability over the whole variability domain. Even 

if, for equivalent tolerance approach verifying 
( ) ( )/ (6 )r r

i piI t C , the capability variability domain is 

larger, the APTA defect probabilities are very close. 

This is explained by the fact that high conditioned 

defect probabilities can be met in the top of the 

inertial domain excluded by the capability domain.  

This basic application shows that capability and 

inertial conformity domains lead to the same number 

of mean out tolerance parts and to the same number 

of maximum conditioned out tolerance parts. 

5 Linear stack up application 

Let us consider a very simple mechanical assembly 

of two parts, 1 and 2 (Figure 6). The functional 

requirement of such an assembly is 1 2Y X X  . 

Parts 1 and 2 of the product are specified as follows: 

 The target dimensions are 1 6T   for part 1 and 

2 4T   for part 2.  

 The tolerances on parts 1 and 2 are set to 

1 2 1/ (1.2 2) 0.59t t   , corresponding to the 

modified root sum of squares tolerancing method 

[6]. A different choice could have been made. 

 The capability requirements are ( ) 1r

piC   and 
( ) 1r

pkiC   for each part. The probability results will 

be compared to an equivalent inertial tolerance 
( ) 0.098r

iI   for each part. The standard deviation 

lower bound is arbitrary set to (min) 0.032   

corresponding to a maximum capability value 
(max) 3pC  . 

 The target value on Y  is 10YT   and the 

functional tolerance is 1Yt   i.e. 

9.5, 10.5Y YLSL USL  . 

5.1 Conditioned defect probability computation 

| ,P ( , )D i i     

For any linear stack up application with Gaussian 

random dimensions, the defect probability knowing 
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the mean shift and the standard deviation ( , )i i   of 

each variable 
iX  is defined as follows: 

| ,P ( , ) Y Y Y Y
D i i

Y Y

LSL USL
 

 
 

 

    
       

   

 

,Y Y   are respectively the mean shift and the 

standard deviation of the resultant dimension Y  

function of ( , )i i  . For this particular application: 

1 2

2 2

1 2

Y Y

Y

T  

  

  

 
 

5.2 Upper bound probability 

Results are presented graphically in Figure 7. Upper 

bound results depend only on the absolute value of 

mean shift of each part dimensions. For the 

capability-based tolerance, the upper bound of defect 

probability PU

D  is got for the maximum allowable 

mean shift that is to say for the minimum value of 

standard deviation. For inertial tolerance, the upper 

value is obtained for a particular combination of 

mean shift and standard deviation located at the 

frontier of the variability domain. The capability 

domain upper value is higher than the inertial domain 

upper value. Furthermore, for capability-based 

tolerance, the upper value is linked to the minimum 

reachable standard deviation which is difficult to 

manage in production. The smallest is the standard 

deviation, the highest is the upper bound of defect 

probability. That is an important drawback of the 

capability-based tolerance regarding inertial tolerance 

that avoids high mean shifts and consequently high 

conditioned defect probabilities. 

5.3 APTA results with uniform mean shifts and 

standard deviations 

For both tolerance approaches, Figure 7 summarizes 

the results got with the APTA approach. The 

expectation of defect probability from the whole 

variability domain is slightly smaller for inertial 

tolerance than for capability-based tolerance.  

6 Non linear application – study of a one way 

clutch 

The mechanical system studied is a one-way clutch 

[10] (see Figure 8). A one-way clutch transmits 

torque in a single direction. The clutch assembly 

consists of the following components: a hub, an outer 

ring, four rollers, and four springs. The geometry of 

the system is defined by three main part dimensions 

noted , ,A C E . The characteristics of each part 

dimension, presented in Table 1, were adapted from 

[10] where only standard deviations were given. As 

previously, two tolerance approaches are proposed 

with a minimum standard deviation (min)

i  reachable 

in production. The function of the one-way clutch 

mechanism is governed by the pressure angle noted 

1 , that takes the following non linear analytic 

expression:  

1

1 cos
A C

E C
   
  

 
 

For functional reasons, the pressure angle must be in 

the range [6.4184;7.6184] in degrees. The defect 

probability is defined by: 

 1P Prob( 6.4184;7.6184 )D   . 

6.1 Conditioned defect probability computation 

| ,P ( , )D i i     

This application deals with a non-linear function f . 

The computation of 
| ,PD    can always be carried out 

by Monte Carlo simulations, but this calculation may 

quickly become very time-consuming especially 

when repeated lots of times as in the APTA method. 

To reduce calculation time, the FORM 

approximation [11] is proposed to be used to evaluate 

| ,PD    as other authors proposed before [9, 12]. This 

consists of a linearization of the limit state functions 
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1( ) ( )i i YG X f X LSL   and 
2 ( ) ( )i Y iG X USL f X   

around the most central failure point. 

6.2 Upper bound probability 

The results of upper bound probability over the 

variability domain are summarized in Figure 9 (top 

for capability-based tolerance and bottom for inertial 

tolerance). In a non linear case, the search of the 

maximum value in not easy since each variable has 

its own influence on f . For the capability-based 

tolerance the maximum value is located at the 

maximum allowable mean shift for each dimension. 

However, the sign of the mean shift is important 

because only one combination (negative for ,A C  

and positive for E ) lead to the upper value of defect 

probability. For the inertial tolerance, the search is 

more complex because the location is not known a 

priori. Anyway the maximum value 

P 336979ppmU

D   achieved in the inertial domain is 

smaller than the capability one. 

6.3 APTA results with uniform mean shifts and 

standard deviation 

The results of the APTA methods can be found 

graphically in Figure 9. The expectation of the defect 

probability is greater for the inertial tolerance than 

for the capability-based tolerance. Additional 

computations confirm that this is due to a high value 

of (min)

i  chosen in this case in comparison with the 

linear stack up application. Very high punctual defect 

probabilities are located in the low corners of the 

capability variability domain. A high minimum 

standard deviation avoids high conditional defect 

probabilities and consequently decreases the 

expectation of the defect probability. 

7 Conclusions 

The bases of the APTA method are reminded in this 

paper. For more information on the applicability in 

an industrial context, the reader can refer to [2] where 

more significant industrial applications are proposed 

from capability-based tolerance of parts. This paper 

shows the applicability of the APTA method on 

linear stack up and non linear functional requirement. 

The second aim of this paper was to prove the 

applicability of the APTA methodology in the case of 

inertial tolerance. Furthermore, the APTA method 

can give results with mixed capability-based and 

inertial tolerance on parts of the same mechanism.  

The third aim was to provide a comparison of 

capability-based tolerance and inertial tolerance in 

terms of defect probability brought about both 

approaches. This comparison, provided from 

applications, is performed by a study of conditioned 

defect probability over the variability domain. The 

inertial tolerance is very interesting because it avoids 

very high conditioned defect probabilities banning 

high values of mean shifts. The inertial tolerance 

restricts the conformity domain size but restricts also 

the maximum conditional defect probability that is 

very important in an industrial context. However, 

even if the capability domain is larger than the 

inertial domain, expectation of defect probability 

provided by the APTA method can be higher for 

inertial tolerance due to high values of allowed defect 

probability at the top of the circular variability 

domain. From the bases of the APTA method, the 

perspectives are multiple and can consider three 

ways. The first one is to use the APTA method for 

the defect probability sensitivity analysis (to define 

critical dimensions to monitored in production) or for 

tolerance synthesis minimizing a cost function 

subjected to a given defect probability. An important 

issue to use the APTA method is to characterize the  

joint probability density function , ( , )i ih     from 

batch data’s following process type. This constitutes 

the second way of improvement. The last one is to go 

about complex mechanisms with improved deviation 

description.  The main issue is the computation time. 
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Problem treated in [5] deals with very time 

consuming Monte Carlo simulations. The APTA 

methods needs lots of probability evaluations with 

different statistical distributions (see paragraph 3.3). 

An alternative to Monte Carlo simulation has to be 

found to tackle tolerance analysis of complex 

systems with the APTA method. 
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Figure 1 : Capability-based tolerance, representation of the conformity domain. In grey conformity domain 

with ( ) ( )2, 1.66r r

pk pt C C   . 

 

Figure 2 : Inertial tolerance, representation of the conformity domain. In grey conformity domain with 
( )2, 0.20rt I  . 

 

 

Figure 3 : comparison of capability-based tolerance and inertial tolerance, iso-defect probability 

 Prob( , )i i iX LSL USL  in ppm. 

 

Figure 4 : Illustration on capability-based conformity domain of the joint probability density function 

, ( , )i ih     on the left and event iB  on the right.  
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Figure 5 : APTA methodology applied to evaluate  Prob( , )X LSL USL . Uniform distribution within the 

variability domain in grey bounded by (min) 0.03  . 

 

Figure 6 : Linear stack up application. 
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Figure 7 : Capability-based tolerance (top) vs inertial tolerance (bottom) - APTA method applied on the basic 

two dimensions linear stack up. Variability domain in grey. 

 

Figure 8 : Non linear application – one way clutch mechanism. 

 

Figure 9 : Capability-based tolerance (top) vs inertial tolerance (bottom) - APTA method applied on the one 

way clutch. Variability domain in grey. 
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Table 1 : dimensions characteristics for the one way clutch. 

Dim. iT  
it  ( )r

piC  ( )r

pkiC  ( )rI  (min)  

A  27.645 0.05 1 1 0.0083 0.0042 

C  11.43 0.05 1 1 0.0083 0.0042 

E  50.80 0.05 1 1 0.0083 0.0042 

 


